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1. Description 

 
 
Enhanced sampling methods (ES) and machine learning potentials (MLPs) have enabled 
classical molecular dynamics (MD) simulations to characterize molecular systems in a 
reasonable computational time: ES allows to explore broader portions of the configuration 
space much faster than conventional MD [1], while MLPs can reach ab initio accuracy at the 
cost of a force field [2], making possible, for instance, to include solvent effects in chemical 
reactions [3]. However, the accuracy of classical MD is limited in cases where nuclear 
quantum effects (NQEs) are important, for example, when computing equilibrium properties 
of hydrogen-bonded systems like water [4] or chemical transformations where proton transfers 
are at play, which is the case for many biological systems such as the DNA [5,6]. 
Many of the methods used to include NQEs are based on the path integral approach [7-10] 
and need the introduction of many replicas of the system, increasing the computational cost. 
For this reason, these methods would benefit from the introduction of MLPs along with ES, 
which can achieve ab initio accuracy for all the atoms while keeping the computational cost 
low. ES and MLPs are independent of each other, hence easily compatible. In the case of 
methods that treat NQEs, the introduction of replicas has an influence on how ES and MLPs 
should be used. In fact, during the training of the MLPs, it must be taken into account that the 
distribution sampled by NQEs is different from the classical one. Still, it is not clear how to do 
it, or if it would be possible to train on entire ring polymers, rather than just replicas of the 
system. Another question is how solvent effects brought by MLPs couple with a system treated 
at the quantum level. 
In this workshop, we will discuss recent developments and applications on enhanced sampling 
and nuclear quantum effects and how the use of machine learning potentials can be a practical 
bridge between the two aspects. This will be made possible through a variety of talks, given 
by invited but also contributed experts coming from different communities, with the main aim 
being to raise discussions and find solutions to the question of including nuclear quantum 
effects in the study of chemical reactions. Such advances would improve accuracy in 
predicting both kinetic and thermodynamic properties. Moreover, a big part of this workshop 
will be dedicated to discussions, establishing a common language and sketching ideas for 
future works in the three communities. 
 

Key References 

[1] F. Pietrucci, Reviews in Physics, 2, 32 (2017) 
[2] J. Behler, M. Parrinello, Phys. Rev. Lett., 98, 146401 (2007) 
[3] M. Yang, L. Bonati, D. Polino, M. Parrinello, Catalysis Today, 387, 143 (2022) 
[4] M. Ceriotti, W. Fang, P. Kusalik, R. McKenzie, A. Michaelides, M. Morales, T. Markland, Chem. Rev., 116, 7529 

(2016) 
[5] A. Pérez, M. Tuckerman, H. Hjalmarson, O. von Lilienfeld, J. Am. Chem. Soc., 132, 11510 (2010) 
[6] W. Fang, J. Chen, M. Rossi, Y. Feng, X. Li, A. Michaelides, J. Phys. Chem. Lett., 7, 2125 (2016) 
[7] B. Berne, J. Stat. Phys., 43, 911 (1986) 
[8] B. Berne, D. Thirumalai, Annu. Rev. Phys. Chem., 37, 401 (1986) 
[9] J. Cao, G. Voth, The Journal of Chemical Physics, 100, 5093 (1994) 
[10] I. Craig, D. Manolopoulos, The Journal of Chemical Physics, 121, 3368 (2004) 
  



 
 

 Page 4 of 24 

2. Program 

 
 

Day 1 - Wednesday November 29th 2023  
 

•  09:00 to 09:30 - Registration 
 

•  09:15 to 09:30 - Welcome & Introduction 
 

•  09:30 to 10:00 - Dominik Marx 

 Coupled cluster path integral simulations: Bosonic quantum solvation and "gold 
standard" water enabled by machine learning 

  

•  10:00 to 10:30 - Sara Bonella 

 Quantum nuclear effects in anharmonic phonon calculations for large systems 
  

•  10:30 to 11:00 - Coffee break 
 

•  11:00 to 11:30 - Simon Huppert 

 Nuclear quantum effects in reactive simulations: Path integral case studies 
  

•  11:30 to 11:45 - Sigbjørn Bore 

 Realistic phase diagram of water from first principles 
  

•  11:45 to 12:00 - Michele Casula 

 Thermal dependence of the hydrated proton and optimal proton transfer in the 
protonated water hexamer 

  

•  12:00 to 13:30 - Lunch 
 

•  13:30 to 14:30 - Discussion 
 

•  14:30 to 15:00 - Luigi Bonati 

 Machine learning & enhanced sampling: From reactive potentials to collective variables 
design 

  

•  15:00 to 15:30 - Gabriel Stoltz 

 Enhanced sampling with autoencoders 
  

•  15:30 to 16:00 - Coffee break 
 

•  16:00 to 16:15 - Nore Stolte 

 Isotope effects in liquid water at CCSD(T) accuracy with coupled cluster molecular 
dynamics 

  

•  16:15 to 16:45 - Chiara Donatella Aieta 

 Semiclassical investigation of nuclear quantum effects in chemical kinetics and 
vibrational spectroscopy 

  

•  16:45 to 18:00 - Discussion 
 

•  18:00 to 20:00 - Poster session & aperitif 
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Day 2 - Thursday November 30th 2023  
 

•  09:00 to 09:30 - Jörg Behler 

 Four generations of high-dimensional neural network potentials for atomistic simulations 
  

•  09:30 to 10:00 - Thomas Markland 

 Modelling ground and excited state condensed phase processes including both nuclear 
quantum effects and high-level electronic structure via machine learning 

  

•  10:00 to 10:15 - Leonardo Medrano Sandonas 

 Synergy between physics and machine learning for property prediction of organic 
systems 

  

•  10:15 to 10:45 - Coffee break 
 

•  10:45 to 11:00 - Veronika Juraskova 

 Automated active learning for chemical reactions in the gas phase and solution 
  

•  11:00 to 12:00 - Discussion 
 

•  12:00 to 13:30 - Lunch 
 

•  13:30 to 14:30 - Discussion 
 

•  14:30 to 14:45 - Julia Maria Westermayr 

 Machine learning to accelerate reaction discovery 
  

•  14:45 to 15:00 - Ana Molina Taborda 

 Adaptive flow MC: An efficient learning approach to Boltzmann distributed molecular 
configurations 

  

•  15:00 to 15:30 - Fabio Pietrucci 

 Can we infer optimal order parameters and kinetic rates from affordable amounts of 
simulation data? 

  

•  15:30 to 16:00 - Coffee break 
 

•  16:00 to 16:30 - Daria Ruth Galimberti 

 Computing chemically accurate free energies from hybrid QM:QM DFT-MD simulations 
  

•  16:30 to 17:00 - Rodolphe Vuilleumier 

 Entanglement and quantum phase transitions in hydrogen bonded systems explored 
using Rényi entropy 

  

•  17:00 to 18:00 - Discussion 
 

•  19:00 to 22:00 - Social dinner 
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Day 3 - Friday December 1st 2023  
 

•  09:00 to 09:30 - Alexandre Tkatchenko 

 Towards exact molecular dynamics with machine-learned force fields 
  

•  09:30 to 10:00 - Bingqing Cheng 

 Ab initio thermodynamics and beyond 
  

•  10:00 to 10:15 - Lukas Petersen 

 High-dimensional neural networks as reactive potentials for ML/MM simulations of thiol-
disulfide exchange reactions 

  

•  10:15 to 10:45 - Coffee break 
 

•  10:45 to 11:00 - Andres Felipe Usuga 

 Enhanced sampling with on-the-fly learning to model the dynamical evolution of Cu 
under oxygen atmospheres 

  

•  11:00 to 11:30 - Geert-Jan Kroes 

 Applications of neural network fitting methods to dissociative chemisorption on metal 
surfaces 

  

•  11:30 to 12:00 - Aran Lamaire 

 Nuclear quantum effects in proton transfer reactions 
  

•  12:00 to 12:30 - End 
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3. Abstracts 

 
 

Ab initio thermodynamics and beyond 
Bingqing Cheng 
IST Austria, Austria 
 
A central goal of computational chemistry is to predict material properties using first-principles methods 
based on the fundamental laws of quantum mechanics. However, the high computational costs of these 
methods typically prevent rigorous predictions of macroscopic quantities at finite temperatures. 
In this talk, I will demonstrate how to enable such predictions by combining advanced statistical 
mechanics with machine learning interatomic potentials. I will show toolkits that facilitate the application 
of machine learning to chemical systems. I will show example applications on computing the phase 
diagram of water and superionic water, chemical potentials of liquid mixtures, adsorption isotherms of 
gas in porous materials, and solubilities of molecular crystals. 
 
 

Adaptive flow MC: An efficient learning approach to Boltzmann distributed 
molecular configurations 

Ana Molina Taborda1, Olga Lopez-Acevedo1, Pilar Cossio2, Marylou Gabrié3 
1University of Antioquia, Colombia 
2Flatiron Institute, New York, United States 
3École Polytechnique, Paris, France 
 
Extracting free-energy differences between relevant metastable states of a molecular system is 
essential for physics, chemistry and biology. Molecular dynamics (MD) simulations can aid in this task 
but they are computationally expensive, especially for systems that require quantum accuracy. To 
overcome this challenge, we developed an approach combining a Markov Chain Monte Carlo (MCMC) 
with deep generative models such as Normalizing Flows (NF) and MD simulations. An adaptive MCMC 
framework enables us to train a generative model per metastable state while converging a Markov 
Chain in parallel, making an efficient use of energy evaluations. The MCMC configurations generated 
and the trained models can subsequently be used to compute thermodynamic observables such as free 
energy differences. Finally, a mixture model on the metastable states can be built to enhance conformal 
sampling across metastable states reflecting their relative importance. The method was applied to study 
the Ag6 molecule - a system with diverse applications in the fields of medicine and catalysis - using 
density functional theory. 

[1] M. Gabrié, G. Rotskoff, E. Vanden-Eijnden, Proc. Natl. Acad. Sci. U.S.A., 119 (2022) 
[2] X. Ding, B. Zhang, J. Phys. Chem. Lett., 12, 2509 (2021) 
[3] D. Sucerquia, C. Parra, P. Cossio, O. Lopez-Acevedo, The Journal of Chemical Physics, 156 (2022) 
 
 

Applications of neural network fitting methods to dissociative chemisorption 
on metal surfaces 
Geert-Jan Kroes 
Leiden University, Netherlands 
 
There is a high interest in modeling dissociative chemisorption reactions on transition metal surfaces 
due to their potential importance to heterogeneous catalysis. No known electronic structure method has 
yet been demonstrated to yield molecule-metal surface interaction energies with guaranteed chemical 
accuracy (errors < 1 kcal/mol). Therefore, the validation of electronic structure methods for these 
problems relies on dynamics calculations of reaction probabilities comparing with the results of 
supersonic molecular beam experiments. In the dynamics calculations the motion of the surface atoms 
needs to be modeled for molecules heavier than H2 if good accuracy is to be achieved. The expense 
of direct dynamics calculations using density functional theory to compute forces (density functional 
molecular dynamics, DFMD) is very high. It is therefore important to have access to a method to fit high-
dimensional potential energy surfaces (PESs) describing the dependence of the molecule-surface 
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interaction on the molecular as well as the surface atoms' degrees of freedom. This can be done with 
methods based on atomic neural networks, using methods developed by Behler and co-workers. I will 
describe applications of these methods performed in my group on systems like N2 + Ru (0001), CH4 + 
Cu (111), and H2 + Al (110), also providing results of dynamics calculations using the potentials 
developed. If there is enough time, I will also briefly discuss applications of similar methods to the 
problem of interest in implementations by other groups. 

 
 

Automated active learning for chemical reactions in the gas phase and 
solution 

Veronika Juraskova, Hanwen Zhang, Valdas Vitartas, Fernanda Duarte 
University of Oxford, United Kingdom 
 
Entropy and solvation effects play a crucial role in modelling chemical processes in complex 
environments. They influence the relative stability of reaction intermediates and transition states, 
dictating the reaction rates, selectivity, and even the complete reaction mechanism. However, the 
accurate computational modelling of these effects remains challenging, particularly when an explicit 
description of solute-solvent interactions is required. 
In this talk, I will discuss our ongoing efforts to develop general and efficient strategies for generating 
reactive MLPs to model chemical processes in diverse environments, including complex solutions. [1-
3] Our approach leverages the Atomic Cluster Expansion framework, combined with linear regression 
or message-passing neural networks [4-6] and automated active learning, requiring only hundreds of 
energies and gradient evaluations in the training set. Furthermore, we combine this strategy with 
enhanced sampling techniques, such as metadynamics, to efficiently sample the energy landscape 
during the training phase and overcome high energy barriers in the reactive processes. Our work 
demonstrates that ACE-based MLPs achieve high accuracy in modelling chemical reactions while 
keeping a significantly low computational cost of data generation. 

[1] T. Young, T. Johnston-Wood, V. Deringer, F. Duarte, Chem. Sci., 12, 10944 (2021) 
[2] T. Young, T. Johnston-Wood, H. Zhang, F. Duarte, Phys. Chem. Chem. Phys., 24, 20820 (2022) 
[3] H. Zhang, V. Juraskova, F. Duarte, Modeling Chemical Processes in Explicit Solvents with Machine Learning 

Potentials, 2023 
[4] R. Drautz, Phys. Rev. B, 99, 014104 (2019) 
[5] D. Kovács, C. Oord, J. Kucera, A. Allen, D. Cole, C. Ortner, G. Csányi, J. Chem. Theory Comput., 17, 7696 

(2021) 
[6] I. Batatia, D. P. Kovacs, G. Simm, C. Ortner, and G. Csányi, Adv. Neural Inf. Process. Syst. 35 11423 (2022) 
 
 

Can we infer optimal order parameters and kinetic rates from affordable 
amounts of simulation data? 

Fabio Pietrucci1, Karen Palacio-Rodriguez2, Line Mouaffac1, David Girardier1, Hadrien 
Vroylandt1 
1Sorbonne Université, France 
2MPI for Biophysics Frankfurt, Germany 
 
I will try to address two fundamental questions: What is the best mathematical description of molecular 
dynamics trajectories projected on an order parameter? Can we infer both the optimal model and the 
optimal order parameter from limited, affordable amounts of simulation data, to predict useful 
quantities? We will see that a reasonable answer to the first question can be cast in some form of 
Langevin equation, while the second question can be addressed by maximizing the likelihood of the 
Langevin model while – at the same time – minimizing the predicted kinetic rate. This approach is worth 
the effort because it can bypass altogether the use of expensive and non-trivial techniques for free-
energy and rate calculation and for the estimation of the committor. I will discuss some applications of 
the new methods to protein-protein interaction and to crystal nucleation. 

[1] K. Palacio-Rodriguez, F. Pietrucci, J. Chem. Theory Comput., 18, 4639 (2022) 
[2] H. Vroylandt, L. Goudenège, P. Monmarché, F. Pietrucci, B. Rotenberg, Proc. Natl. Acad. Sci. U.S.A., 119 

(2022) 
[3] L. Mouaffac, K. Palacio-Rodriguez, F. Pietrucci, J. Chem. Theory Comput., 19, 5701 (2023) 
[4] D. Girardier, H. Vroylandt, S. Bonella, F. Pietrucci, The Journal of Chemical Physics, 159 (2023) 
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Computing chemically accurate free energies from hybrid QM:QM DFT-MD 
simulations 

Daria Ruth Galimberti 
Radboud Universiteit Nijmegen, Netherlands 
 
I will present the recently developed MD-based theoretical methodology (DOS-P) to compute 
chemically accurate free energies [1] using the adsorption of ethanol in H-MFI zeolite as a test case. 
While sampling the free energy surface by Molecular Dynamics (MD) or Monte Carlo simulations 
requires respectively long simulations (50 ps up to 1ns) and/or millions of energy calculations, DOS-P 
allows obtaining well-converged enthalpies, entropies, and free energies of adsorption from vibrational 
partition functions based on the (anharmonic) VDOS signal using a set of short trajectories (maximum 
3ps). 
The reduced computational cost of DOS-P enables the use of QM:QM MD simulations in which an 
accurate high-level quantum mechanics description is used for the reactive sub-system, together with 
a low-level periodic quantum mechanics description for the rest (PBE+D2). 
In the talk, I will critically compare the adsorption geometry, enthalpy, entropies, and free energy 
computed at the B3LYP+D2:PBE+D2 level of theory with the PBE+D2 data and the experimental 
values. 

[1] D. Galimberti, J. Sauer, J. Chem. Theory Comput., 17, 5849 (2021) 
 
 

Coupled cluster path integral simulations: Bosonic quantum solvation and 
"gold standard" water enabled by machine learning 

Dominik Marx 
Ruhr-Universität Bochum, Germany 
 
My talk will focus on our recent advances that allow us to perform converged reactive path integral 
simulations of floppy molecules in bosonic quantum solvents down to 1 Kelvin [1] and of liquid water at 
ambient conditions [2] at essentially converged coupled cluster accuracy. This progress is enabled by 
generating many-body potential energy surfaces in the framework of high-dimensional neural network 
techniques that have been trained using CCSD(T) electronic structure calculations, thus providing "Gold 
Standard" quantum-chemical accuracy for cryochemistry and condensed phase simulations. 

[1] F. Brieuc, C. Schran, F. Uhl, H. Forbert, D. Marx, The Journal of Chemical Physics, 152 (2020) 
[2] J. Daru, H. Forbert, J. Behler, D. Marx, Phys. Rev. Lett., 129, 226001 (2022) 
 
 

Enhanced sampling with autoencoders 

Gabriel Stoltz 
Ecole des Ponts, France 
 
One systematic and efficient way of biasing the sampling is to rely on adaptive dynamics to compute 
the free energy. This however requires a good choice of the collective variables. In order to limit the 
need for an intuitive understanding of the system and expert knowledge, an idea is to rely on machine 
learning techniques. One appealing tool to this end is autoencoders, for which the bottleneck layer 
provides a low dimensional representation of high dimensional atomistic systems. I will discuss some 
mathematical properties of autoencoders, related in particular to conditional expectations and minimum 
energy paths [1]; and then present applications to biophysical systems explored using free energy 
biasing and updates of the collective variable through retraining of the neural network [2,3]. 

[1] T. Lelièvre, T. Pigeon, G. Stoltz and W. Zhang, arXiv preprint 2310.03492 (2023) 
[2] Z. Belkacemi, P. Gkeka, T. Lelièvre, G. Stoltz, J. Chem. Theory Comput., 18, 59 (2021) 
[3] Z. Belkacemi, M. Bianciotto, H. Minoux, T. Lelièvre, G. Stoltz, P. Gkeka, The Journal of Chemical Physics, 159 

(2023) 
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Enhanced sampling with on-the-fly learning to model the dynamical evolution 
of Cu under oxygen atmospheres 

Andres Felipe Usuga1, Aleix Comas-Vives2 
1Universitat Autònoma de Barcelona, Spain 
2TU Wien, Austria 
 
Exploring the nature of Cu-based catalysts at the atomic level is challenging. This task is compounded 
when considering reaction conditions, and the characterization of their active sites is scarce [1], a 
ubiquitous phenomenon in heterogeneous catalysis. A clear example of this complexity emerges when 
analyzing the behavior of Cu-based catalysts under redox atmospheres, highlighting the dynamical 
phase transformation of Cu to Cu2O over time [2]. One approach to understanding the system is based 
on the exploration of the Potential Energy Surface (PES) using enhanced sampling methods such as 
Metadynamics. Nevertheless, sampling the PES via DFT calculations is highly computationally 
demanding. Machine Learning (ML) methodologies have emerged as an alternative for predicting 
structure-related properties such as the total energy and atomic forces, providing models with accuracy 
comparable to the DFT level. Our approach proposes a workflow based on on-the-fly learning to train 
an interatomic potential using Machine Learning (MLP) with enhanced sampling via Metadynamics. In 
this workflow, we employed the DeepMD-kit code [3] for the MLP training, aimed Molecular Dynamics 
simulation on LAMMPS [4], and implemented biased potentials using PLUMED [5]. 

[1] J. Cao, A. Rinaldi, M. Plodinec, X. Huang, E. Willinger, A. Hammud, S. Hieke, S. Beeg, L. Gregoratti, C. Colbea, 
R. Schlögl, M. Antonietti, M. Greiner, M. Willinger, Nat. Commun., 11, 3554 (2020) 

[2] X. Huang, T. Jones, A. Fedorov, R. Farra, C. Copéret, R. Schlögl, M. Willinger, Advanced Materials, 33 (2021) 
[3] H. Wang, L. Zhang, J. Han, W. E, Computer Physics Communications, 228, 178 (2018) 
[4] A. Thompson, H. Aktulga, R. Berger, D. Bolintineanu, W. Brown, P. Crozier, P. in 't Veld, A. Kohlmeyer, S. 

Moore, T. Nguyen, R. Shan, M. Stevens, J. Tranchida, C. Trott, S. Plimpton, Computer Physics 
Communications, 271, 108171 (2022) 

[5] M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi, P. Raiteri, D. Donadio, F. Marinelli, F. Pietrucci, 
R. Broglia, M. Parrinello, Computer Physics Communications, 180, 1961 (2009) 

 
 

Entanglement and quantum phase transitions in hydrogen bonded systems 
explored using Rényi entropy 
Rodolphe Vuilleumier1, Miha Srdinšek2, Michele Casula3 
1Sorbonne Université - ENS-PSL, France 
2Sorbonne Université - ENS-PSL - ISCD, France 
3CNRS, France 
 
Rényi entropy is a generalization of Von Neumann entropy that can measured more easily.[1] We have 
developed a method to compute second-order Rényi entropy, called collision entropy, from path-integral 
simulations.[2] To do so, we express Rényi entropy as the free energy associated with merging paths 
of two copies of the system. We will then show how Rényi entropy can demonstrate the entanglement 
of the two protons of the formic acid dimer or can be used to study the nature of the quantum phase 
transition in a model of a one-dimensional chain of hydrogen bonds. Nevertheless, the method remains 
costly computationally. In order to access more realistic systems, we have employed a neural network 
potential, DeepMD [3], to explore the ice VIII to ice X transition at high pressure. 

[1] Rényi, A. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 
1: Contributions to the Theory of Statistics, vol. 4, pages 547 (1961) 

[2] M. Srdinšek, M. Casula, R. Vuilleumier, Phys. Rev. Research, 4, L032002 (2022) 
[3] H. Wang, L. Zhang, J. Han, W. E, Computer Physics Communications, 228, 178 (2018) 
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Four generations of high-dimensional neural network potentials for atomistic 
simulations 

Jörg Behler 
Ruhr-Universität Bochum, Germany 
 
A lot of progress has been made in recent years in the development of machine learning potentials 
(MLP) for atomistic simulations. Neural network potentials (NNPs), which have been introduced more 
than two decades ago, are an important class of MLPs. While the first generation of NNPs has been 
restricted to small molecules with only a few degrees of freedom, the second generation extended the 
applicability of MLPs to high-dimensional systems containing thousands of atoms by constructing the 
total energy as a sum of environment-dependent atomic energies [1]. Long-range electrostatic 
interactions can be included in third-generation NNPs employing environment-dependent charges [2], 
but only recently limitations of this locality approximation could be overcome by the introduction of 
fourth-generation NNPs [3,4], which are able to describe non-local charge transfer using a global charge 
equilibration step. In this talk an overview about high-dimensional neural network potentials will be given 
along with typical applications in large-scale atomistic simulations. 

[1] J. Behler, M. Parrinello, Phys. Rev. Lett., 98, 146401 (2007) 
[2] N. Artrith, T. Morawietz, J. Behler, Phys. Rev. B, 83, 153101 (2011) 
[3] S. Ghasemi, A. Hofstetter, S. Saha, S. Goedecker, Phys. Rev. B, 92, 045131 (2015) 
[4] T. Ko, J. Finkler, S. Goedecker, J. Behler, Nat. Commun., 12, 398 (2021) 
 
 

High-dimensional neural networks as reactive potentials for ML/MM 
simulations of thiol-disulfide exchange reactions 

Lukas Petersen, Christian Schmidt 
Karlsruhe Institut of Technology, Germany 
 
In order to describe biochemical processes a hybrid quantum mechanical/molecular mechanical 
(QM/MM) approach can be applied. Typically, semi-empirical methods, such as density functional tight-
binding (DFTB), are used as the QM method due to the computational cost of numerous calculations. 
While DFTB is 2-3 orders of magnitudes faster than DFT, their approximations lead to deviations from 
higher level methods [1]. 
In our ongoing research we are dedicated to training a 4th generation High-Dimensional Neural Network 
Potential [2] incorporating environmental effects during QM/MM-calculations. This involves including 
the electrostatic potential caused by MM-zone in order to calculate the electrostatic interaction between 
QM- and MM-zone within the electrostatic embedding scheme. This network is trained using structures 
of the thiol-disulfide exchange reaction, a process known for its strong dependence on the surrounding 
environment [3,4]. 

[1] C. Gómez-Flores, D. Maag, M. Kansari, V. Vuong, S. Irle, F. Gräter, T. Kubař, M. Elstner, J. Chem. Theory 
Comput., 18, 1213 (2022) 

[2] T. Ko, J. Finkler, S. Goedecker, J. Behler, Nat. Commun., 12, 398 (2021) 
[3] D. Maag, M. Putzu, C. Gómez-Flores, F. Gräter, M. Elstner, T. Kubař, Phys. Chem. Chem. Phys., 23, 26366 

(2021) 
[4] M. Putzu, F. Gräter, M. Elstner, T. Kubař, Phys. Chem. Chem. Phys., 20, 16222 (2018) 
 
 

 
 
 
 
 
 
 
 
 
 



 
 

 Page 12 of 24 

Isotope effects in liquid water at CCSD(T) accuracy with coupled cluster 
molecular dynamics 

Nore Stolte 
Ruhr-Universität Bochum, Germany 
 
With coupled cluster molecular dynamics (CCMD) [1] simulations of bulk liquid H2O and D2O at ambient 
conditions, we have investigated nuclear quantum effects in liquid water. CCMD is made possible with 
high-dimensional neural network potentials [2,3] trained on CCSD(T) coupled cluster data. Simulations 
with large unit cells (256 molecules), converged path integral discretization (P = 32), and long simulation 
times (5 ns) are readily accessible with CCMD. Using CCMD to compare H2O and D2O, we carefully 
study isotope effects on dynamical properties, where well-established experimental results are 
available, and on structural properties, where experimental data are less conclusive. 

[1] J. Daru, H. Forbert, J. Behler, D. Marx, Phys. Rev. Lett., 129, 226001 (2022) 
[2] J. Behler, M. Parrinello, Phys. Rev. Lett., 98, 146401 (2007) 
[3] J. Behler, Chem. Rev., 121, 10037 (2021) 
 
 

Machine learning & enhanced sampling: From reactive potentials to collective 
variables design 

Luigi Bonati 
Italian Institute of Technology, Italy 
 
In this talk, I will illustrate how machine learning and enhanced sampling methods can be combined in 
different ways to successfully study rare events. 
A first interaction concerns the construction of reactive potentials. Learning of the potential energy 
surface with machine learning methods has emerged as an alternative that can bridge the gap between 
the accuracy of DFT calculations with the efficiency of empirical potentials. However, many reactive 
processes such as chemical reactions and phase transitions occur on longer time scales than we can 
simulate, making it difficult to collect reference configurations. To circumvent this problem and produce 
robust and reliable potentials, we use an active learning strategy accelerated by enhanced sampling 
methods such as metadynamics or OPES. The fruitful combination of these techniques enables DFT-
quality reactive simulations of rare events that would otherwise fall outside the scope of classical and 
ab initio simulations [1-3]. 
The combination of these methods makes it possible to observe various chemical-physical processes, 
for the first time with ab initio-like quality, taking full account of dynamics. A revealing example is the 
study of the dynamics of the iron (111) surface at high temperatures and its influence on the 
decomposition of N2 [4-5], which is believed to be the rate-limiting step for the famed Haber-Bosch 
process. We observed how, under operating conditions, atoms on the surface become highly mobile, 
active sites are continuously formed and broken, and the reaction profile is different from that at low 
temperatures. If we then consider the effect of a finite coverage of nitrogen atoms on the surface, we 
again find two different behaviors depending on temperature. At room temperature, the N atoms poison 
the catalyst by blocking the active sites. In contrast, at high temperatures, poisoning is greatly 
diminished through the formation of triangular motifs that cause the N atoms to cluster together. These 
results highlight the danger of extrapolating low-temperature results to operando conditions and 
indicate that catalytic activity can only be inferred from calculations that fully account for dynamics. 
Finally, I will show how machine learning methods can be used to learn collective variables for 
enhancing sampling directly from atomistic data. In particular, I will discuss a general multi-task learning 
framework in which multiple objective functions and data from different simulations can be combined to 
design CVs and the implementation of such methods in the mlcolvar library [6]. 

[1] L. Bonati, M. Parrinello, Phys. Rev. Lett., 121, 265701 (2018) 
[2] H. Niu, L. Bonati, P. Piaggi, M. Parrinello, Nat. Commun., 11, 2654 (2020) 
[3] M. Yang, L. Bonati, D. Polino, M. Parrinello, Catalysis Today, 387, 143 (2022) 
[4] L. Bonati, D. Polino, C. Pizzolitto, P. Biasi, R. Eckert, S. Reitmeier, R. Schlögl, M. Parrinello, The role of 

dynamics in heterogeneous catalysis: surface diffusivity and N2 decomposition on Fe(111), 2023 
[5] S. Tripathi, L. Bonati, S. Perego, M. Parrinello, How poisoning is avoided in a step of relevance to the Haber-

Bosch catalysis, 2023 
[6] L. Bonati, E. Trizio, A. Rizzi, M. Parrinello, The Journal of Chemical Physics, 159 (2023) 
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Machine learning to accelerate reaction discovery 

Julia Maria Westermayr, Rhyan Barrett 
Leipzig University, Germany 
 
Chemical reactions are fundamental to drive the transformation of matter and are pivotal across diverse 
domains like medicine, materials science, and energy generation. In this talk, we will explore the 
potential of machine learning algorithms to explore the discovery of chemical reactions. Specifically, we 
will illustrate the proficiency of deep neural networks in accelerating the prediction of excited-state 
properties, thereby enhancing our understanding of the photodynamics in organic molecules [1,2]. 
Additionally, we will showcase the efficiency of reinforcement learning in expediting exploration through 
the vast expanse of chemical structure space [3]. 

[1] J. Westermayr, P. Marquetand, Chem. Rev., 121, 9873 (2020) 
[2] J. Westermayr, M. Gastegger, D. Vörös, L. Panzenboeck, F. Joerg, L. González, P. Marquetand, Nat. Chem., 

14, 914 (2022) 
[3] R. Barrett and J. Westermayr, arXiv:2310.03511 (2023) 
 
 

Modelling ground and excited state condensed phase processes including 
both nuclear quantum effects and high-level electronic structure via machine 
learning 

Thomas Markland 
Stanford University, United States 
 
Obtaining the atomistic structure and dynamics of disordered condensed-phase systems from first 
principles remains one of the forefront challenges of chemical theory. Accurately capturing chemical 
processes involving light atoms in condensed phase systems requires an accurate treatment of the 
electronic potential energy surface as well as nuclear quantum effects. However, due to the system 
sizes and timescales required most condensed phase ab initio molecular dynamics simulations have 
traditionally been performed using density functional theory and classical dynamics. In this talk, I will 
discuss our recent work combining path integral simulations with high-level wavefunction theories for 
ground (AFQMC, CCSD, CCSD(T)) and excited state (EOM-CCSD) processes. In particular, I will show 
how one can obtain a data-efficient approach to obtain machine-learned condensed-phase potential 
energy surfaces using a very small number (≤200) of energies by leveraging a transfer learning scheme 
starting from lower-tier electronic structure methods which can then be utilized in path integral 
simulations to include nuclear quantum effects. I will demonstrate the effectiveness of this approach 
with our recent applications to liquid water and the linear and multidimensional electronic spectroscopy 
of the green fluorescent protein chromophore in water. By doing this, we uncover the interplay of 
dynamical electron correlation and nuclear quantum effects in these systems while providing a general 
strategy for efficiently utilizing periodic correlated electronic structure methods to explore disordered 
condensed-phase systems. 

[1] M. Chen, Y. Mao, A. Snider, P. Gupta, A. Montoya-Castillo, T. Zuehlsdorff, C. Isborn, T. Markland, J. Phys. 
Chem. Lett., 14, 6610 (2023) 

[2] M. Chen, J. Lee, H. Ye, T. Berkelbach, D. Reichman, T. Markland, J. Chem. Theory Comput., 19, 4510 (2023) 
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Nuclear quantum effects in proton transfer reactions 

Aran Lamaire, Massimo Bocus, Ruben Goeminne, Sander Vandenhaute, Maarten Cools-
Ceuppens, Toon Verstraelen, Veronique Van Speybroeck 
Ghent University, Belgium 
 
Proton transfer reactions are omnipresent in chemical processes. Due to the light mass of the proton, 
an adequate description of nuclear quantum effects (NQEs) is indispensable to model these reactions. 
Starting from three typical molecular proton transfer reactions, this talk demonstrates the impact of a 
proper description of the quantum free energy profile [1], which can differ significantly from the semi-
classical free energy profile of the ring polymer centroid in path integral molecular dynamics (PIMD) 
simulations. Through the use of neural network machine learning potentials (MLPs), free energy 
calculations involving enhanced sampling can be easily performed for a wide range of temperatures 
with a systematic inclusion of NQEs. 
This concept is further elaborated by broadening the scope from molecular systems to a nanoporous 
material, to study proton hopping in the chabazite zeolite. Besides the influence of NQEs on the free 
energy of the proton hopping, also the hopping kinetics are studied, as well as the kinetic isotope effect 
on the hopping. By relying on an efficient approach to generate the data required to train an MLP, the 
use of MLPs in combination with NQEs and enhanced sampling is steadily becoming a standard 
practice, even for large nanoporous materials. [3] 

[1] A. Lamaire, M. Cools-Ceuppens, M. Bocus, T. Verstraelen, V. Van Speybroeck, J. Chem. Theory Comput., 19, 
18 (2022) 

[2] M. Bocus, R. Goeminne, A. Lamaire, M. Cools-Ceuppens, T. Verstraelen, V. Van Speybroeck, Nat. Commun., 
14, 1008 (2023) 

[3] S. Vandenhaute, M. Cools-Ceuppens, S. DeKeyser, T. Verstraelen, V. Van Speybroeck, npj. Comput. Mater., 
9, 19 (2023) 

 
 

Nuclear quantum effects in reactive simulations: Path integral case studies 

Simon Huppert 
Sorbonne Université, France 
 
Nuclear quantum effects such as zero-point energy and tunneling can affect chemical reactions, usually 
increasing the associated rate. Though fully quantum simulation of the reactive nuclear dynamics is not 
numerically feasible in general, different approximate methods can be used to account for quantum 
effects in reaction rate calculations. In particular, we will focus on the ring-polymer rate theory, a path-
integral based method that has proved able to capture both zero-point energy and tunneling with a good 
accuracy. After briefly reviewing their theoretical basis, we will illustrate the possibilities of ring-polymer 
simulations with two applications. First, we will show how tunneling dramatically affects the low-
temperature rate of the Cope rearrangement of semibulvalene, despite the relatively large mass of the 
atoms involved in the reaction (carbon). Second, we will present a ring-polymer study of the double 
proton transfer dynamics in Guanine-Cytosine base pairs. We will analyze how this process (proposed 
in literature as a potential mechanism of appearance of DNA mutations) is accelerated by nuclear 
quantum effects, but also crucially affected by the influence of the molecular environment surrounding 
the base pair. 
 
 

Quantum nuclear effects in anharmonic phonon calculations for large systems 

Sara Bonella 
CECAM HQ, Switzerland 
 
The analysis of lattice vibrations provides vital information on a variety of material properties. When the 
material contains light ions or is subjected to temperatures and/or pressures deviating significantly from 
ambient conditions, anharmonic and quantum effects may alter its phonon characteristics. Simulating 
these effects, however, comes at a numerical cost still too high to model large systems within a first 
principle model of the interactions. Here, we present an approach that facilitates anharmonic quantum 
phonon calculations via accurate and relatively low cost ab initio molecular dynamics. We leverage the 
power of the recently introduced mass zero constrained dynamics in the orbital free DFT framework [1], 
together with a computational framework that relates anharmonic phonon spectra to time correlation 
functions [2]. Path integral and quantum thermal bath dynamics are employed and compared to 
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incorporate quantum nuclear effects. The performance of the approach is illustrated by simulations of 
metallic lithium. 

[1] A. Coretti, T. Baird, R. Vuilleumier, S. Bonella, The Journal of Chemical Physics, 157 (2022) 
[2] T. Morresi, L. Paulatto, R. Vuilleumier, M. Casula, J. Chem. Phys., 154, 224108 (2021) 
 
 

Realistic phase diagram of water from first principles 

Sigbjørn Bore1, Francesco Paesani2 
1University of Oslo, Norway 
2University of California, San Diego, United States 
 
Since the experimental characterization of the low-pressure region of water’s phase diagram in the early 
1900s, scientists have been on a quest to understand the thermodynamic stability of ice polymorphs on 
the molecular level. In this presentation, I will talk about our recent work combining the MB-pol many-
body potential for water with advanced enhanced sampling algorithms for simulations of water’s phase 
diagram with unprecedented realism. Besides providing fundamental insights into how enthalpic, 
entropic, and nuclear quantum effects shape the free-energy landscape of water, our work 
demonstrates how recent progress in data-driven simulations opens the door to realistic computational 
studies of complex molecular systems, bridging the gap between experiments and simulations. 
 
 

Semiclassical investigation of nuclear quantum effects in chemical kinetics 
and vibrational spectroscopy 

Chiara Donatella Aieta 
Università degli Studi di Milano, Italy 
 
Nuclear Quantum Effects (NQE) manifest in chemistry in both kinetics and spectroscopy fields. 
Accounting for the Zero Point Energy (ZPE) and tunneling phenomena can explain unexpected 
experimental observations of reaction rate constants.[1,2] Also, in spectroscopy, some spectral 
features, such as signal splittings or shifts, are due to tunneling phenomena or quantum delocalization 
(or localization), which cause the system to sample the potential energy surface in a non-classical 
way.[3,4] Rigorous but at the same time, affordable methods to include NQE in atomistic simulations 
must be developed to predict and explain experimental quantum mechanical hallmarks. This talk will 
describe semiclassical approaches for kinetics and spectroscopic applications. Specifically, the 
Semiclassical Transition State Theory (SCTST) can include tunneling and ZPE effects at a higher level 
of theory than widespread tunneling corrections for classical TST rate calculations.[5-7] Then, the 
Semiclassical Initial Value Representation Molecular Dynamics (SC-IVR-MD) can predict accurate 
vibrational spectra and even reproduce vibrational quantum eigenfunctions.[9,10] Thus, the SC-IVR-
MD technique can reproduce the quantum mechanical sampling of the potential energy surface, fixing 
purely classical MD vibrational spectroscopy pitfalls.[11] 

[1] J. Meisner, J. Kästner, Angew. Chem. Int. Ed., 55, 5400 (2016) 
[2] P. Schreiner, Trends in Chemistry, 2, 980 (2020) 
[3] F. Gabas, G. Di Liberto, R. Conte, M. Ceotto, Chem. Sci., 9, 7894 (2018) 
[4] R. Conte, A. Aspuru-Guzik, M. Ceotto, J. Phys. Chem. Lett., 4, 3407 (2013) 
[5] W. Miller, R. Hernandez, N. Handy, D. Jayatilaka, A. Willetts, Chemical Physics Letters, 172, 62 (1990) 
[6] C. Aieta, F. Gabas, M. Ceotto, J. Phys. Chem. A, 120, 4853 (2016) 
[7] C. Aieta, F. Gabas, M. Ceotto, J. Chem. Theory Comput., 15, 2142 (2019) 
[8] G. Mandelli, C. Aieta, M. Ceotto, J. Chem. Theory Comput., 18, 623 (2022) 
[9] C. Aieta, M. Micciarelli, G. Bertaina, M. Ceotto, Nat. Commun., 11, 4348 (2020) 
[10] C. Aieta, G. Bertaina, M. Micciarelli, M. Ceotto, The Journal of Chemical Physics, 153 (2020) 
[11] R. Conte, C. Aieta, G. Botti, M. Cazzaniga, M. Gandolfi, C. Lanzi, G. Mandelli, D. Moscato, M. Ceotto, Theor. 

Chem. Acc., 142, 53 (2023) 
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Synergy between physics and machine learning for property prediction of 
organic systems 

Leonardo Medrano Sandonas, Mirela Puleva, Alexandre Tkatchenko 
University of Luxembourg, Luxembourg 
 
Machine learning has been proven to be an extremely valuable tool for simulations with ab-initio 
accuracy at the computational cost between classical interatomic potentials and density-functional 
approximations. Similar efficiency can only be achieved by semi-empirical (SE) methods such as 
density-functional tight-binding (DFTB). However, shortcomings still exist in the pairwise DFTB 
repulsive component and the treatment of long-range (e.g., electrostatics and van der Waals) 
interactions in non-covalent systems. Therefore, building on our previous work (DFTB+NNrep) [1], we 
have developed a scalable methodology that corrects the DFTB repulsive potential to a many-body 
potential via the use of an equivariant neural network (NN), which considers local and non-local physical 
interactions [2]. Moreover, a many-body dispersion treatment is applied to describe van der Waals 
interactions, which are crucial to investigate large/more flexible molecules and molecular dimers. Our 
many-body NNrep potential is trained to fit the PBE0-level data for single molecules from the QM7-X 
dataset [3] and the resultant model is tested rigorously. Firstly, DFTB+NNrep shows an improvement in 
capturing intramolecular interactions as illustrated by the prediction of rotational energy profiles for 
organic molecules of increased size and flexibility compared to the training set. Furthermore, despite 
not training on non-covalent systems, our model predicts accurately the interaction energy of the 
molecular dimers from the s66x8 dataset as well as that of large molecular clusters extracted from the 
X23 molecular crystals dataset. Hence, our ML-corrected DFTB approach combines scalability and 
generalisability with improved accuracy. Thus, we conclude that finding an optimal synergy between 
SE and NN methods is key to the development of reliable models for the computation of 
physicochemical properties of diverse molecular systems. 

[1] M. Stöhr, L. Medrano Sandonas, A. Tkatchenko, J. Phys. Chem. Lett., 11, 6835 (2020) 
[2] O.T. Unke et al. ,arXiv:2205.08306 (2022) 
[3] L. Medrano Sandonas, J. Hoja, B. Ernst, Á. Vázquez-Mayagoitia, R. DiStasio, A. Tkatchenko, Chem. Sci., 14, 

10702 (2023) 
 
 

Thermal dependence of the hydrated proton and optimal proton transfer in the 
protonated water hexamer 

Michele Casula1, Félix Mouhat2, Matteo Peria1, Tommaso Morresi3, Rodolphe Vuilleumier4, 
Marco Saitta1 
1Sorbonne Université & CNRS, France 
2Saint Gobain Research, France 
3ECT-Fondazione Bruno Kessler, Italy 
4PASTEUR, Département de Chimie, École normale supérieure, France 
 
Water is a key ingredient for life and plays a central role as solvent in many biochemical reactions. 
However, the intrinsically quantum nature of the hydrogen nucleus, revealing itself in a large variety of 
physical manifestations, including proton transfer, gives rise to unexpected phenomena whose 
description is still elusive. By a combination of state-of-the-art quantum Monte Carlo methods and path-
integral molecular dynamics, we study the structure and hydrogen-bond dynamics of the protonated 
water hexamer, the fundamental unit for the hydrated proton. We find a remarkably low thermal 
expansion of the hydrogen bond from zero temperature up to 300 K, owing to the presence of short-
Zundel configurations, characterized by proton delocalization and favored by the synergy of nuclear 
quantum effects and thermal activation. The hydrogen bond strength progressively weakens above 300 
K, when localized Eigen-like configurations become relevant. Our analysis, supported by the instanton 
statistics of shuttling protons, reveals that the near-room-temperature range from 250 K to 300 K is 
optimal for proton transfer in the protonated water hexamer. We finally discuss how the accurate but 
expensive quantum Monte Carlo method used to compute the nuclear forces can be replaced by 
machine learning potentials, with the aim at extending this study to larger clusters up to the bulk water. 

[1] F. Mouhat, M. Peria, T. Morresi, R. Vuilleumier, A. Saitta, M. Casula, Nat. Commun., 14, 6930 (2023) 
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Towards exact molecular dynamics with machine-learned force fields 

Alexandre Tkatchenko 
University of Luxembourg, Luxembourg 
 
The convergence between accurate quantum-mechanical (QM) models (and codes) with efficient 
machine learning (ML) methods seem to promise a paradigm shift in molecular simulations. Many 
challenging applications are now being tackled by increasingly powerful QM/ML methodologies. These 
include modeling covalent materials, molecules, molecular crystals, surfaces, and even whole proteins 
in explicit water [1]. 
In this talk, I attempt to provide a reality check on these recent advances and on the developments 
required to enable fully quantum dynamics of complex functional (bio)molecular systems. Multiple 
challenges are highlighted that should keep theorists in business for the foreseeable future: 

1. Ensuring the accuracy of high-level QM methods [2]. 
2. Describing intricate QM long-range interactions [3-4-5]. 
3. Treating quantum electrodynamic effects that become relevant for complex molecules [6-7]. 
4. Developing increasingly accurate, efficient, scalable, and transferable ML architectures for 

molecules and materials [8, 1, 9]. 
5. Accounting for the quantum nature of the nuclei and the influence of external environments [10-

11]. 
I argue that only a conjunction of all these developments will enable the long-held dream of fully 
quantum (bio)molecular simulations. 

[1] O. T. Unke, M. Stöhr, S. Ganscha, T. Unterthiner, H. Maennel, S. Kashubin, D. Ahlin, M. Gastegger, L. Medrano 
Sandonas, A. Tkatchenko, K.-R. Müller, Chem. Phys. (2022) 

[2] Y. Al-Hamdani, P. Nagy, A. Zen, D. Barton, M. Kállay, J. Brandenburg, A. Tkatchenko, Nat. Commun., 12, 3927 
(2021) 

[3] M. Stöhr, A. Tkatchenko, Sci. Adv., 5 (2019) 
[4] A. Ambrosetti, N. Ferri, R. DiStasio, A. Tkatchenko, Science, 351, 1171 (2016) 
[5] P. Hauseux, A. Ambrosetti, S. Bordas, A. Tkatchenko, Phys. Rev. Lett., 128, 106101 (2022) 
[6] M. Karimpour, D. Fedorov, A. Tkatchenko, J. Phys. Chem. Lett., 13, 2197 (2022) 
[7] M. Karimpour, D. Fedorov, A. Tkatchenko, Phys. Rev. Research, 4, 013011 (2022) 
[8] H. Sauceda, L. Gálvez-González, S. Chmiela, L. Paz-Borbón, K. Müller, A. Tkatchenko, Nat. Commun., 13, 

3733 (2022) 
[9] A. Kabylda, V. Vassilev-Galindo, S. Chmiela, I. Poltavsky, A. Tkatchenko, Chem. Phys., (2023)  
[10] H. Sauceda, V. Vassilev-Galindo, S. Chmiela, K. Müller, A. Tkatchenko, Nat. Commun., 12, 442 (2021) 
[11] A. Ambrosetti, P. Umari, P. Silvestrelli, J. Elliott, A. Tkatchenko, Nat. Commun., 13, 813 (2022) 
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4. Posters 

 
 

Controlling the band gap of graphene with vacancies 
Diyan Unmu Dzujah, Hongde Yu, Thomas Heine 
Technische Universität Dresden, Germany 
 
Graphene is composed of light-weight atoms, making the spin-orbit coupling (SOC) is weak and yields 
only tiny band gaps that limit its applications [1]. In planar carbon lattices, a sizable band gap can be 
opened by quantum confinement (size control), structural elements as coves, chirality (edge control), 
and by chemical perturbation [2,3]. The Tight Binding (TB) approximation is a suitable method to check 
the roles of the π orbital in graphene and elucidate its effects in structural change of graphene towards 
the electronic properties. In this study, variations of defects in graphene were calculated by removing 
the A and B sublattices of graphene. The same number of sublattice A and B can induce band gap in 
graphene, while inequal number of sublattices removal induces flat bands on Fermi energy level. In 
further study, it is essential to validate the results obtained from TB and compare them with experiments 
by using a more accurate calculation such as DFT. However, larger structure demands more 
computational resources, and machine learning can be an appropriate method for the larger structure 
calculations. 

[1] C. Kane, E. Mele, Phys. Rev. Lett., 95, 226801 (2005) 
[2] L. Gao, J. Sun, G. Sethi, Y. Zhang, S. Du, F. Liu, Nanoscale, 11, 22743 (2019) 
[3] M. Springer, T. Liu, A. Kuc, T. Heine, Chem. Soc. Rev., 49, 2007 (2020) 
 
 

Dynamics of AlF-AlF: Potential energy surface and intermediate complex 
characterization 

Xiangyue Liu1, Weiqi Wang1, Jesús Pérez-Ríos2 
1Fritz Haber Institute of the Max Planck Society, Germany 
2Department of Physics and Astronomy, Stony Brook University, United States 
 
AlF plays a crucial role in astrochemistry as a tracer for F-bearing molecules. Additionally, AlF exhibits 
diagonal Franck-Condon factors and can be efficiently produced in the laboratory, making it a 
prototypical molecule for laser cooling. Despite these attributes, little is known about the reaction 
dynamics of AlF, particularly concerning the formation of AlF-AlF dimer complexes. Such complexes 
can lead to molecular loss and are, therefore, considered undesirable. 
This study delves into the reaction dynamics of the AlF-AlF system. We have developed an accurate 
machine-learning full-dimensional potential energy surface (PES) for the AlF-AlF complex, focusing on 
regions relevant to dynamics. Utilizing this PES, ab initio molecular dynamics simulations were 
conducted for the AlF-AlF system within an active-learning framework. Consequently, we identify the 
primary reaction mechanisms and the lifetime of the intermediate complex AlF-AlF, providing insights 
into astrochemistry environments and regions within buffer gas cells. 

[1] X. Liu, W. Wang, J. Pérez-Ríos, The Journal of Chemical Physics, 159 (2023) 
[2] W. Wang, X. Liu, J. Pérez-Ríos, arXiv:2307.12416 (2023)  
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Gas-phase sugar synthesis 

Weiqi Wang1, Hunarpreet Kaur2, Sandra Brünken2, Jesús Pérez Ríos3 
1Fritz Haber Institute of the Max Planck Society, Germany 
2FELIX Laboratory, Faculty of Science, Radboud University, Nijmegen, Netherlands 
3Department of Physics and Astronomy, Stony Brook University, New York, United States 
 
The inquiry regarding the commencement and process of prebiotic synthesis within our universe 
remains central to the origins of life puzzle. Presently, the understanding of the role and efficiency of 
chemical pathways leading to complexity remains fragmented and primarily experienced. One of the 
fundamental initial steps in comprehending prebiotic synthesis is the exploration of pathways involved 
in the creation of simple sugars. The theoretical component of this project elucidates the intricate 
reaction networks governing the genesis of protonated glycolaldehyde, which signifies the initial stage 
in sugar synthesis. Utilizing the ab initio molecular dynamics method, exploration of the entire relevant 
phase space has been accomplished. Consequently, it becomes feasible to construct a comprehensive 
reaction network outlining the formation of protonated glycolaldehyde. In order to identify the species 
observed in the IR experiments, IR spectra are calculated from simulations under finite ensemble 
temperatures or specific kinetic temperature conditions. Additionally, the thermodynamic conditions 
within the experimental chamber are determined. 
 
 

High-dimensional neural networks as reactive potentials for ML/MM 
simulations of thiol-disulfide exchange reactions 
Lukas Petersen, Christian Schmidt 
Karlsruhe Institut of Technology, Germany 
 
In order to describe biochemical processes a hybrid quantum mechanical/molecular mechanical 
(QM/MM) approach can be applied. Typically, semi-empirical methods, such as density functional tight-
binding (DFTB), are used as the QM method due to the computational cost of numerous calculations. 
While DFTB is 2-3 orders of magnitudes faster than DFT, their approximations lead to deviations from 
higher level methods [1]. 
In our ongoing research we are dedicated to training a 4th generation High-Dimensional Neural Network 
Potential [2] incorporating environmental effects during QM/MM-calculations. This involves including 
the electrostatic potential caused by MM-zone in order to calculate the electrostatic interaction between 
QM- and MM-zone within the electrostatic embedding scheme. This network is trained using structures 
of the thiol-disulfide exchange reaction, a process known for its strong dependence on the surrounding 
environment [3,4]. 
This poster provides additional technical details to the identically named talk. 

[1] C. Gómez-Flores, D. Maag, M. Kansari, V. Vuong, S. Irle, F. Gräter, T. Kubař, M. Elstner, J. Chem. Theory 

Comput., 18, 1213 (2022) 
[2] T. Ko, J. Finkler, S. Goedecker, J. Behler, Nat. Commun., 12, 398 (2021) 
[3] M. Putzu, F. Gräter, M. Elstner, T. Kubař, Phys. Chem. Chem. Phys., 20, 16222 (2018) 
[4] D. Maag, M. Putzu, C. Gómez-Flores, F. Gräter, M. Elstner, T. Kubař, Phys. Chem. Chem. Phys., 23, 26366 

(2021) 
 
 

Inferring free-energy barriers and kinetic rates from MD via Langevin models 

David Girardier1, Hadrien Vroylandt1, Sara Bonella2, Fabio Pietrucci1 
1Sorbonne Université, France 
2CECAM, Switzerland 
 
Rare events include many of the most interesting transformation processes in condensed matter, from 
phase transitions to biomolecular conformational changes to chemical reactions. Access to the 
corresponding mechanisms, free-energy landscapes and kinetics (mean first passage time MFPT) can 
be obtained by projecting the high-dimensional atomic dynamics on one (or a few) collective variable 
(CV). The projected dynamics then approximately follows in a statistical sense the generalized, 
underdamped or overdamped Langevin equations depending on the time resolution. In this work we 
focus on Markovian, underdamped Langevin equations, that arise naturally when considering numerous 
water-solution processes at sub-picosecond resolution such as fullerenes dimer dissociation. We 
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present an efficient parametrization strategy based on a limited set of molecular dynamics (MD) data, 
including equilibrium trajectories confined to minima and ∼100 transition path sampling (TPS) 

trajectories. Employing velocity autocorrelation function (VACF) for learning the friction, likelihood 
maximization for learning the free-energy landscape and coordinate transformation for the mass. 
 
 

Molecular dynamics simulations of deep eutectic systems using machine 
learning interatomic potentials 

Omid Shayestehpour, Stefan Zahn 
Leibniz Institute of Surface Engineering, Germany 
 
Deep eutectic systems (DESs) are an emerging class of compounds characterized by melting points 
significantly lower than their individual components. They have many desirable characteristics such as 
low vapor pressure, thermal stability, and tunable properties, which makes them suitable candidates for 
room-temperature solvents and electrolytes [1]. 
We have investigated the ability of machine-learned (ML) interatomic potentials for molecular dynamics 
(MD) simulations of these liquids, showcasing a trained neural network potential for a 1:2 ratio mixture 
of choline chloride and urea. Using the ML potentials trained on density-functional theory (DFT) data, 
accurate MD simulations for large systems of thousands of atoms and nanoseconds-long time scales 
are feasible at a fraction of the computational cost of the target DFT simulations [2]. 

[1] B. Hansen, S. Spittle, B. Chen, D. Poe, Y. Zhang, J. Klein, A. Horton, L. Adhikari, T. Zelovich, B. Doherty, B. 

Gurkan, E. Maginn, A. Ragauskas, M. Dadmun, T. Zawodzinski, G. Baker, M. Tuckerman, R. Savinell, J. 
Sangoro, Chem. Rev., 121, 1232 (2020) 

[2] O. Shayestehpour, S. Zahn, Efficient molecular dynamics simulations of deep eutectic solvents with first-
principles accuracy using machine learning interatomic potentials (2023) 

 
 

Path integrals and neural networks as force field and analysis tools to study 
concerted connectivity changes 
Emilio Mendez1, Daniel Laria2, Rocio Semino1 
1Sorbonne Université, France 
2Departamento de Materia Condensada, Comision Nacional de Energia Atomica, Argentina 
 
We present results from ring polymer molecular dynamics simulations of collective proton transfers in 
water-ammonia clusters [1]. A neural network potential is trained using configurations from path integral 
trayectories constrained with umbrella sampling techniques to gather statistics along all the reaction 
pathway. 
In analogy, we also show results of Zn-N bond braking/formation in ZIF-4 metal organic frameworks, 
using neural networks as an analysis tool to identify environments of different possible phases during 
the simulations [2]. 

[1] E. Méndez, P. Videla, D. Laria, J. Phys. Chem. A, 127, 1839 (2023) 
[2] S. Balestra, R. Semino, The Journal of Chemical Physics, 157 (2022) 
 
 

Reinforcement learning for traversing chemical structure space 

Rhyan Barrett, Julia Westermayr 
Leipzig University, Germany 
 
Recent advancements in deep learning have outpaced human performance in many complex tasks like 
protein structure prediction of games like Go. In quantum chemistry, machine learning has mainly been 
used for prediction and design, while reinforcement learning is still in its early stages. This study 
introduces an actor-critic reinforcement learning framework for diverse optimization tasks, such as 
exploring molecular structures in conformational spaces. We showcase its efficacy by accurately 
predicting minimum energy pathways for chemical reactions, specifically Claisen rearrangement and 
SN2 reactions. This demonstrates the promising application of actor-critic methods in studying chemical 
reactions 
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Simulating a solid para-hydrogen matrix using path integrals 

Archy Tripathi, Harald Forbert, Dominik Marx 
Ruhr-Universität Bochum, Germany 
 
Solid parahydrogen matrices have been successfully used in matrix isolation spectroscopy experiments 
[1,2] at low temperatures (3-5 K) to host molecular impurities. These matrices provide a gentle 
environment, allowing for studies of exotic molecules or labile intermediates hardly accessible by 
conventional spectroscopic tools. However, not much is known about how small molecules get 
embedded in these matrices. In order to facilitate better understanding of their quantum solvation, we 
use quantum simulation techniques like Path Integral Molecular Dynamics (PIMD) [3] and Ring Polymer 
Molecular Dynamics (RPMD) [4] to simulate this quantum solid. A crucial foundational step here is to 
accurately generate a pure solid para-hydrogen matrix with a realistic structure. To this end, we mimick 
the experimental deposition of the matrix within the simulation as accurately as possible. The 
desposition protocol involves launching a new molecule with a random velocity towards an equilibrated, 
4-layered slab of parahydrogen molecules and then thermalized to let it settle on top. This process is 
repeated until the desired size of the deposited matrix has been attained. Multiple different runs of the 
simulation protocol are seen to produce different structures of the solid matrix. 

[1] T. Momose, T. Shida, BCSJ., 71, 1 (1998) 
[2] Y. Lee, Y. Wu, R. Lees, L. Xu, J. Hougen, Science, 311, 365 (2006) 
[3] M. Tuckerman, 'Statistical Mechanics: Theory and Molecular Simulation', Oxford University Press, Oxford (2010) 
[4] I. Craig, D. Manolopoulos, The Journal of Chemical Physics, 121, 3368 (2004) 
 
 

Validating an Mg-H potential learnt "on-the-fly" for nuclear quantum effects 
calculations 

Kai Sellschopp 
Helmholtz-Zentrum Hereon, Germany 
 
In a sustainable economy built on renewable energy, hydrogen plays a key role for storing energy and 
replacing fossil fuels. An efficient way to store hydrogen is to keep it in the solid state by binding it 
chemically in a metal hydride, which is particularly useful for seasonal energy storage or for applications 
where safety is a concern. Despite the fact that hydrogen is known to show nuclear quantum effects 
(NQE) even at higher temperatures, these have been neglected in computational studies of metal 
hydrides so far due to the high cost of path-integral molecular dynamics calculations. In this work, a 
machine-learned potential (MLP) is trained for the Mg-H system, a well-known hydrogen storage 
material, in order to speed up the simulations and bring down the cost. At the same time, the sample 
collection is accelerated by training the potential "on-the-fly" during classical molecular dynamics runs, 
where ab-initio calculations are replaced by the MLP whenever the estimated errors are low enough. 
Here, I present how the training of this MLP is monitored and how the accuracy for NQE calculations 
can be validated afterwards. 
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