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1. Description

Enhanced sampling methods (ES) and machine learning potentials (MLPs) have enabled
classical molecular dynamics (MD) simulations to characterize molecular systems in a
reasonable computational time: ES allows to explore broader portions of the configuration
space much faster than conventional MD [1], while MLPs can reach ab initio accuracy at the
cost of a force field [2], making possible, for instance, to include solvent effects in chemical
reactions [3]. However, the accuracy of classical MD is limited in cases where nuclear
guantum effects (NQESs) are important, for example, when computing equilibrium properties
of hydrogen-bonded systems like water [4] or chemical transformations where proton transfers
are at play, which is the case for many biological systems such as the DNA [5,6].

Many of the methods used to include NQEs are based on the path integral approach [7-10]
and need the introduction of many replicas of the system, increasing the computational cost.
For this reason, these methods would benefit from the introduction of MLPs along with ES,
which can achieve ab initio accuracy for all the atoms while keeping the computational cost
low. ES and MLPs are independent of each other, hence easily compatible. In the case of
methods that treat NQESs, the introduction of replicas has an influence on how ES and MLPs
should be used. In fact, during the training of the MLPs, it must be taken into account that the
distribution sampled by NQEs is different from the classical one. Still, it is not clear how to do
it, or if it would be possible to train on entire ring polymers, rather than just replicas of the
system. Another question is how solvent effects brought by MLPs couple with a system treated
at the quantum level.

In this workshop, we will discuss recent developments and applications on enhanced sampling
and nuclear quantum effects and how the use of machine learning potentials can be a practical
bridge between the two aspects. This will be made possible through a variety of talks, given
by invited but also contributed experts coming from different communities, with the main aim
being to raise discussions and find solutions to the question of including nuclear quantum
effects in the study of chemical reactions. Such advances would improve accuracy in
predicting both kinetic and thermodynamic properties. Moreover, a big part of this workshop
will be dedicated to discussions, establishing a common language and sketching ideas for
future works in the three communities.

Key References

[1] F. Pietrucci, Reviews in Physics, 2, 32 (2017)

[2] J. Behler, M. Parrinello, Phys. Rev. Lett., 98, 146401 (2007)

[3] M. Yang, L. Bonati, D. Polino, M. Parrinello, Catalysis Today, 387, 143 (2022)

[4] M. Ceriotti, W. Fang, P. Kusalik, R. McKenzie, A. Michaelides, M. Morales, T. Markland, Chem. Rev., 116, 7529
(2016)

[5] A. Pérez, M. Tuckerman, H. Hjalmarson, O. von Lilienfeld, J. Am. Chem. Soc., 132, 11510 (2010)

[6] W. Fang, J. Chen, M. Rossi, Y. Feng, X. Li, A. Michaelides, J. Phys. Chem. Lett., 7, 2125 (2016)

[7] B. Berne, J. Stat. Phys., 43, 911 (1986)
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2.

Program

Day 1 - Wednesday November 29th 2023

09:00 to 09:30 - Registration
09:15 to 09:30 - Welcome & Introduction

09:30 to 10:00 - Dominik Marx
Coupled cluster path integral simulations: Bosonic quantum solvation and "gold
standard" water enabled by machine learning

10:00 to 10:30 - Sara Bonella
Quantum nuclear effects in anharmonic phonon calculations for large systems

10:30 to 11:00 - Coffee break

11:00 to 11:30 - Simon Huppert
Nuclear quantum effects in reactive simulations: Path integral case studies

11:30 to 11:45 - Sigbj@rn Bore
Realistic phase diagram of water from first principles

11:45 to 12:00 - Michele Casula

Thermal dependence of the hydrated proton and optimal proton transfer in the
protonated water hexamer

12:00 to 13:30 - Lunch
13:30 to 14:30 - Discussion

14:30 to 15:00 - Luigi Bonati
Machine learning & enhanced sampling: From reactive potentials to collective variables
design

15:00 to 15:30 - Gabriel Stoltz
Enhanced sampling with autoencoders

15:30 to 16:00 - Coffee break

16:00 to 16:15 - Nore Stolte
Isotope effects in liquid water at CCSD(T) accuracy with coupled cluster molecular
dynamics

16:15 to 16:45 - Chiara Donatella Aieta
Semiclassical investigation of nuclear quantum effects in chemical kinetics and
vibrational spectroscopy

16:45 to 18:00 - Discussion

18:00 to 20:00 - Poster session & aperitif
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Day 2 - Thursday November 30th 2023

09:00 to 09:30 - JOorg Behler
Four generations of high-dimensional neural network potentials for atomistic simulations

09:30 to 10:00 - Thomas Markland
Modelling ground and excited state condensed phase processes including both nuclear
guantum effects and high-level electronic structure via machine learning

10:00 to 10:15 - Leonardo Medrano Sandonas
Synergy between physics and machine learning for property prediction of organic
systems

10:15 to 10:45 - Coffee break

10:45 to 11:00 - Veronika Juraskova
Automated active learning for chemical reactions in the gas phase and solution

11:00 to 12:00 - Discussion
12:00 to 13:30 - Lunch
13:30 to 14:30 - Discussion

14:30 to 14:45 - Julia Maria Westermayr
Machine learning to accelerate reaction discovery

14:45 to 15:00 - Ana Molina Taborda
Adaptive flow MC: An efficient learning approach to Boltzmann distributed molecular
configurations

15:00 to 15:30 - Fabio Pietrucci
Can we infer optimal order parameters and kinetic rates from affordable amounts of
simulation data?

15:30 to 16:00 - Coffee break

16:00 to 16:30 - Daria Ruth Galimberti
Computing chemically accurate free energies from hybrid QM:QM DFT-MD simulations

16:30 to 17:00 - Rodolphe Vuilleumier
Entanglement and quantum phase transitions in hydrogen bonded systems explored
using Rényi entropy

17:00 to 18:00 - Discussion

19:00 to 22:00 - Social dinner
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Day 3 - Friday December 1st 2023

09:00 to 09:30 - Alexandre Tkatchenko
Towards exact molecular dynamics with machine-learned force fields

09:30 to 10:00 - Bingging Cheng
Ab initio thermodynamics and beyond

10:00 to 10:15 - Lukas Petersen
High-dimensional neural networks as reactive potentials for ML/MM simulations of thiol-
disulfide exchange reactions

10:15 to 10:45 - Coffee break

10:45 to 11:00 - Andres Felipe Usuga
Enhanced sampling with on-the-fly learning to model the dynamical evolution of Cu
under oxygen atmospheres

11:00 to 11:30 - Geert-Jan Kroes
Applications of neural network fitting methods to dissociative chemisorption on metal
surfaces

11:30 to 12:00 - Aran Lamaire
Nuclear quantum effects in proton transfer reactions

12:00 to 12:30 - End
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3. Abstracts

Ab initio thermodynamics and beyond
Bingging Cheng
IST Austria, Austria

A central goal of computational chemistry is to predict material properties using first-principles methods
based on the fundamental laws of quantum mechanics. However, the high computational costs of these
methods typically prevent rigorous predictions of macroscopic quantities at finite temperatures.

In this talk, | will demonstrate how to enable such predictions by combining advanced statistical
mechanics with machine learning interatomic potentials. | will show toolkits that facilitate the application
of machine learning to chemical systems. | will show example applications on computing the phase
diagram of water and superionic water, chemical potentials of liquid mixtures, adsorption isotherms of
gas in porous materials, and solubilities of molecular crystals.

Adaptive flow MC: An efficient learning approach to Boltzmann distributed
molecular configurations

Ana Molina Taborda?, Olga Lopez-Acevedo?, Pilar Cossio?, Marylou Gabrié?
tUniversity of Antioquia, Colombia

2Flatiron Institute, New York, United States

3Ecole Polytechnique, Paris, France

Extracting free-energy differences between relevant metastable states of a molecular system is
essential for physics, chemistry and biology. Molecular dynamics (MD) simulations can aid in this task
but they are computationally expensive, especially for systems that require quantum accuracy. To
overcome this challenge, we developed an approach combining a Markov Chain Monte Carlo (MCMC)
with deep generative models such as Normalizing Flows (NF) and MD simulations. An adaptive MCMC
framework enables us to train a generative model per metastable state while converging a Markov
Chain in parallel, making an efficient use of energy evaluations. The MCMC configurations generated
and the trained models can subsequently be used to compute thermodynamic observables such as free
energy differences. Finally, a mixture model on the metastable states can be built to enhance conformal
sampling across metastable states reflecting their relative importance. The method was applied to study
the Ag6 molecule - a system with diverse applications in the fields of medicine and catalysis - using
density functional theory.

[1] M. Gabrié, G. Rotskoff, E. Vanden-Eijnden, Proc. Natl. Acad. Sci. U.S.A., 119 (2022)

[2] X. Ding, B. Zhang, J. Phys. Chem. Lett., 12, 2509 (2021)

[3] D. Sucerquia, C. Parra, P. Cossio, O. Lopez-Acevedo, The Journal of Chemical Physics, 156 (2022)

Applications of neural network fitting methods to dissociative chemisorption
on metal surfaces

Geert-Jan Kroes

Leiden University, Netherlands

There is a high interest in modeling dissociative chemisorption reactions on transition metal surfaces
due to their potential importance to heterogeneous catalysis. No known electronic structure method has
yet been demonstrated to yield molecule-metal surface interaction energies with guaranteed chemical
accuracy (errors < 1 kcal/mol). Therefore, the validation of electronic structure methods for these
problems relies on dynamics calculations of reaction probabilities comparing with the results of
supersonic molecular beam experiments. In the dynamics calculations the motion of the surface atoms
needs to be modeled for molecules heavier than H2 if good accuracy is to be achieved. The expense
of direct dynamics calculations using density functional theory to compute forces (density functional
molecular dynamics, DFMD) is very high. Itis therefore important to have access to a method to fit high-
dimensional potential energy surfaces (PESs) describing the dependence of the molecule-surface
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interaction on the molecular as well as the surface atoms' degrees of freedom. This can be done with
methods based on atomic neural networks, using methods developed by Behler and co-workers. | will
describe applications of these methods performed in my group on systems like N2 + Ru (0001), CH4 +
Cu (111), and H2 + Al (110), also providing results of dynamics calculations using the potentials
developed. If there is enough time, | will also briefly discuss applications of similar methods to the
problem of interest in implementations by other groups.

Automated active learning for chemical reactions in the gas phase and
solution

Veronika Juraskova, Hanwen Zhang, Valdas Vitartas, Fernanda Duarte
University of Oxford, United Kingdom

Entropy and solvation effects play a crucial role in modelling chemical processes in complex

environments. They influence the relative stability of reaction intermediates and transition states,

dictating the reaction rates, selectivity, and even the complete reaction mechanism. However, the

accurate computational modelling of these effects remains challenging, particularly when an explicit

description of solute-solvent interactions is required.

In this talk, I will discuss our ongoing efforts to develop general and efficient strategies for generating

reactive MLPs to model chemical processes in diverse environments, including complex solutions. [1-

3] Our approach leverages the Atomic Cluster Expansion framework, combined with linear regression

or message-passing neural networks [4-6] and automated active learning, requiring only hundreds of

energies and gradient evaluations in the training set. Furthermore, we combine this strategy with

enhanced sampling technigues, such as metadynamics, to efficiently sample the energy landscape

during the training phase and overcome high energy barriers in the reactive processes. Our work

demonstrates that ACE-based MLPs achieve high accuracy in modelling chemical reactions while

keeping a significantly low computational cost of data generation.

[1] T. Young, T. Johnston-Wood, V. Deringer, F. Duarte, Chem. Sci., 12, 10944 (2021)

[2] T. Young, T. Johnston-Wood, H. Zhang, F. Duarte, Phys. Chem. Chem. Phys., 24, 20820 (2022)

[3] H. Zhang, V. Juraskova, F. Duarte, Modeling Chemical Processes in Explicit Solvents with Machine Learning
Potentials, 2023

[4] R. Drautz, Phys. Rev. B, 99, 014104 (2019)

[5] D. Kovécs, C. Oord, J. Kucera, A. Allen, D. Cole, C. Ortner, G. Csanyi, J. Chem. Theory Comput., 17, 7696
2021

[6] I(. Bata)tia, D. P. Kovacs, G. Simm, C. Ortner, and G. Csanyi, Adv. Neural Inf. Process. Syst. 35 11423 (2022)

Can we infer optimal order parameters and kinetic rates from affordable
amounts of simulation data?

Fabio Pietrucci!, Karen Palacio-Rodriguez?, Line Mouaffac!, David Girardier!, Hadrien
Vroylandt!

1Sorbonne Université, France

2MPI for Biophysics Frankfurt, Germany

| will try to address two fundamental questions: What is the best mathematical description of molecular

dynamics trajectories projected on an order parameter? Can we infer both the optimal model and the

optimal order parameter from limited, affordable amounts of simulation data, to predict useful

guantities? We will see that a reasonable answer to the first question can be cast in some form of

Langevin equation, while the second question can be addressed by maximizing the likelihood of the

Langevin model while — at the same time — minimizing the predicted kinetic rate. This approach is worth

the effort because it can bypass altogether the use of expensive and non-trivial techniques for free-

energy and rate calculation and for the estimation of the committor. | will discuss some applications of

the new methods to protein-protein interaction and to crystal nucleation.

[1] K. Palacio-Rodriguez, F. Pietrucci, J. Chem. Theory Comput., 18, 4639 (2022)

[2] H. Vroylandt, L. Goudenege, P. Monmarché, F. Pietrucci, B. Rotenberg, Proc. Natl. Acad. Sci. U.S.A., 119
2022

[3] IE Mogaffac, K. Palacio-Rodriguez, F. Pietrucci, J. Chem. Theory Comput., 19, 5701 (2023)

[4] D. Girardier, H. Vroylandt, S. Bonella, F. Pietrucci, The Journal of Chemical Physics, 159 (2023)
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Computing chemically accurate free energies from hybrid QM:QM DFT-MD
simulations

Daria Ruth Galimberti

Radboud Universiteit Nijmegen, Netherlands

I will present the recently developed MD-based theoretical methodology (DOS-P) to compute
chemically accurate free energies [1] using the adsorption of ethanol in H-MFI zeolite as a test case.
While sampling the free energy surface by Molecular Dynamics (MD) or Monte Carlo simulations
requires respectively long simulations (50 ps up to 1ns) and/or millions of energy calculations, DOS-P
allows obtaining well-converged enthalpies, entropies, and free energies of adsorption from vibrational
partition functions based on the (anharmonic) VDOS signal using a set of short trajectories (maximum
3ps).

The reduced computational cost of DOS-P enables the use of QM:QM MD simulations in which an
accurate high-level quantum mechanics description is used for the reactive sub-system, together with
a low-level periodic quantum mechanics description for the rest (PBE+D2).

In the talk, | will critically compare the adsorption geometry, enthalpy, entropies, and free energy
computed at the B3LYP+D2:PBE+D2 level of theory with the PBE+D2 data and the experimental
values.

[1] D. Galimberti, J. Sauer, J. Chem. Theory Comput., 17, 5849 (2021)

Coupled cluster path integral simulations: Bosonic quantum solvation and
"gold standard" water enabled by machine learning

Dominik Marx

Ruhr-Universitat Bochum, Germany

My talk will focus on our recent advances that allow us to perform converged reactive path integral
simulations of floppy molecules in bosonic quantum solvents down to 1 Kelvin [1] and of liquid water at
ambient conditions [2] at essentially converged coupled cluster accuracy. This progress is enabled by
generating many-body potential energy surfaces in the framework of high-dimensional neural network
techniques that have been trained using CCSD(T) electronic structure calculations, thus providing "Gold
Standard" quantum-chemical accuracy for cryochemistry and condensed phase simulations.

[1] F. Brieuc, C. Schran, F. Uhl, H. Forbert, D. Marx, The Journal of Chemical Physics, 152 (2020)

[2] J. Daru, H. Forbert, J. Behler, D. Marx, Phys. Rev. Lett., 129, 226001 (2022)

Enhanced sampling with autoencoders
Gabriel Stoltz
Ecole des Ponts, France

One systematic and efficient way of biasing the sampling is to rely on adaptive dynamics to compute

the free energy. This however requires a good choice of the collective variables. In order to limit the

need for an intuitive understanding of the system and expert knowledge, an idea is to rely on machine

learning techniques. One appealing tool to this end is autoencoders, for which the bottleneck layer

provides a low dimensional representation of high dimensional atomistic systems. | will discuss some

mathematical properties of autoencoders, related in particular to conditional expectations and minimum

energy paths [1]; and then present applications to biophysical systems explored using free energy

biasing and updates of the collective variable through retraining of the neural network [2,3].

[1] T. Leliévre, T. Pigeon, G. Stoltz and W. Zhang, arXiv preprint 2310.03492 (2023)

[2] Z. Belkacemi, P. Gkeka, T. Leliévre, G. Stoltz, J. Chem. Theory Comput., 18, 59 (2021)

[3] Z. Belkacemi, M. Bianciotto, H. Minoux, T. Leliévre, G. Stoltz, P. Gkeka, The Journal of Chemical Physics, 159
(2023)
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Enhanced sampling with on-the-fly learning to model the dynamical evolution
of Cu under oxygen atmospheres

Andres Felipe Usuga?, Aleix Comas-Vives?

lUniversitat Autonoma de Barcelona, Spain

2TU Wien, Austria

Exploring the nature of Cu-based catalysts at the atomic level is challenging. This task is compounded

when considering reaction conditions, and the characterization of their active sites is scarce [1], a

ubiquitous phenomenon in heterogeneous catalysis. A clear example of this complexity emerges when

analyzing the behavior of Cu-based catalysts under redox atmospheres, highlighting the dynamical
phase transformation of Cu to Cu20 over time [2]. One approach to understanding the system is based
on the exploration of the Potential Energy Surface (PES) using enhanced sampling methods such as

Metadynamics. Nevertheless, sampling the PES via DFT calculations is highly computationally

demanding. Machine Learning (ML) methodologies have emerged as an alternative for predicting

structure-related properties such as the total energy and atomic forces, providing models with accuracy
comparable to the DFT level. Our approach proposes a workflow based on on-the-fly learning to train
an interatomic potential using Machine Learning (MLP) with enhanced sampling via Metadynamics. In
this workflow, we employed the DeepMD-kit code [3] for the MLP training, aimed Molecular Dynamics

simulation on LAMMPS [4], and implemented biased potentials using PLUMED [5].

[1] J. Cao, A. Rinaldi, M. Plodinec, X. Huang, E. Willinger, A. Hammud, S. Hieke, S. Beeg, L. Gregoratti, C. Colbea,
R. Schlégl, M. Antonietti, M. Greiner, M. Willinger, Nat. Commun., 11, 3554 (2020)

[2] X. Huang, T. Jones, A. Fedorov, R. Farra, C. Copéret, R. Schlégl, M. Willinger, Advanced Materials, 33 (2021)

[3] H. Wang, L. Zhang, J. Han, W. E, Computer Physics Communications, 228, 178 (2018)

[4] A. Thompson, H. Aktulga, R. Berger, D. Bolintineanu, W. Brown, P. Crozier, P. in 't Veld, A. Kohlmeyer, S.
Moore, T. Nguyen, R. Shan, M. Stevens, J. Tranchida, C. Trott, S. Plimpton, Computer Physics
Communications, 271, 108171 (2022)

[5] M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi, P. Raiteri, D. Donadio, F. Marinelli, F. Pietrucci,
R. Broglia, M. Parrinello, Computer Physics Communications, 180, 1961 (2009)

Entanglement and quantum phase transitions in hydrogen bonded systems
explored using Rényi entropy

Rodolphe Vuilleumier!, Miha Srdinsek?, Michele Casula3

1Sorbonne Université - ENS-PSL, France

2Sorbonne Université - ENS-PSL - ISCD, France

3CNRS, France

Rényi entropy is a generalization of Von Neumann entropy that can measured more easily.[1] We have

developed a method to compute second-order Rényi entropy, called collision entropy, from path-integral

simulations.[2] To do so, we express Rényi entropy as the free energy associated with merging paths

of two copies of the system. We will then show how Rényi entropy can demonstrate the entanglement

of the two protons of the formic acid dimer or can be used to study the nature of the quantum phase

transition in a model of a one-dimensional chain of hydrogen bonds. Nevertheless, the method remains

costly computationally. In order to access more realistic systems, we have employed a neural network

potential, DeepMD [3], to explore the ice VIII to ice X transition at high pressure.

[1] Rényi, A. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume
1: Contributions to the Theory of Statistics, vol. 4, pages 547 (1961)

[2] M. SrdinSek, M. Casula, R. Vuilleumier, Phys. Rev. Research, 4, L032002 (2022)

[3] H. Wang, L. Zhang, J. Han, W. E, Computer Physics Communications, 228, 178 (2018)
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Four generations of high-dimensional neural network potentials for atomistic
simulations

Jorg Behler

Ruhr-Universitat Bochum, Germany

A lot of progress has been made in recent years in the development of machine learning potentials
(MLP) for atomistic simulations. Neural network potentials (NNPs), which have been introduced more
than two decades ago, are an important class of MLPs. While the first generation of NNPs has been
restricted to small molecules with only a few degrees of freedom, the second generation extended the
applicability of MLPs to high-dimensional systems containing thousands of atoms by constructing the
total energy as a sum of environment-dependent atomic energies [1]. Long-range electrostatic
interactions can be included in third-generation NNPs employing environment-dependent charges [2],
but only recently limitations of this locality approximation could be overcome by the introduction of
fourth-generation NNPs [3,4], which are able to describe non-local charge transfer using a global charge
equilibration step. In this talk an overview about high-dimensional neural network potentials will be given
along with typical applications in large-scale atomistic simulations.

[1] J. Behler, M. Parrinello, Phys. Rev. Lett., 98, 146401 (2007)

[2] N. Artrith, T. Morawietz, J. Behler, Phys. Rev. B, 83, 153101 (2011)

[3] S. Ghasemi, A. Hofstetter, S. Saha, S. Goedecker, Phys. Rev. B, 92, 045131 (2015)

[4] T. Ko, J. Finkler, S. Goedecker, J. Behler, Nat. Commun., 12, 398 (2021)

High-dimensional neural networks as reactive potentials for ML/MM
simulations of thiol-disulfide exchange reactions

Lukas Petersen, Christian Schmidt

Karlsruhe Institut of Technology, Germany

In order to describe biochemical processes a hybrid quantum mechanical/molecular mechanical

(QM/MM) approach can be applied. Typically, semi-empirical methods, such as density functional tight-

binding (DFTB), are used as the QM method due to the computational cost of numerous calculations.

While DFTB is 2-3 orders of magnitudes faster than DFT, their approximations lead to deviations from

higher level methods [1].

In our ongoing research we are dedicated to training a 4th generation High-Dimensional Neural Network

Potential [2] incorporating environmental effects during QM/MM-calculations. This involves including

the electrostatic potential caused by MM-zone in order to calculate the electrostatic interaction between

QM- and MM-zone within the electrostatic embedding scheme. This network is trained using structures

of the thiol-disulfide exchange reaction, a process known for its strong dependence on the surrounding

environment [3,4].

[1] C. Gomez-Flores, D. Maag, M. Kansari, V. Vuong, S. Irle, F. Gréter, T. Kubar, M. Elstner, J. Chem. Theory
Comput., 18, 1213 (2022)

[2] T. Ko, J. Finkler, S. Goedecker, J. Behler, Nat. Commun., 12, 398 (2021)

[3] D. Maag, M. Putzu, C. Gémez-Flores, F. Gréter, M. Elstner, T. Kubar, Phys. Chem. Chem. Phys., 23, 26366
2021

4] I\(A Put)zu, F. Gréter, M. Elstner, T. Kubar, Phys. Chem. Chem. Phys., 20, 16222 (2018)
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Isotope effects in liquid water at CCSD(T) accuracy with coupled cluster
molecular dynamics

Nore Stolte

Ruhr-Universitat Bochum, Germany

With coupled cluster molecular dynamics (CCMD) [1] simulations of bulk liquid H20 and D20 at ambient
conditions, we have investigated nuclear quantum effects in liquid water. CCMD is made possible with
high-dimensional neural network potentials [2,3] trained on CCSD(T) coupled cluster data. Simulations
with large unit cells (256 molecules), converged path integral discretization (P = 32), and long simulation
times (5 ns) are readily accessible with CCMD. Using CCMD to compare H20 and D20, we carefully
study isotope effects on dynamical properties, where well-established experimental results are
available, and on structural properties, where experimental data are less conclusive.

[1] J. Daru, H. Forbert, J. Behler, D. Marx, Phys. Rev. Lett., 129, 226001 (2022)

[2] J. Behler, M. Parrinello, Phys. Rev. Lett., 98, 146401 (2007)

[3] J. Behler, Chem. Rev., 121, 10037 (2021)

Machine learning & enhanced sampling: From reactive potentials to collective
variables design

Luigi Bonati

Italian Institute of Technology, Italy

In this talk, | will illustrate how machine learning and enhanced sampling methods can be combined in
different ways to successfully study rare events.
A first interaction concerns the construction of reactive potentials. Learning of the potential energy
surface with machine learning methods has emerged as an alternative that can bridge the gap between
the accuracy of DFT calculations with the efficiency of empirical potentials. However, many reactive
processes such as chemical reactions and phase transitions occur on longer time scales than we can
simulate, making it difficult to collect reference configurations. To circumvent this problem and produce
robust and reliable potentials, we use an active learning strategy accelerated by enhanced sampling
methods such as metadynamics or OPES. The fruitful combination of these techniques enables DFT-
quality reactive simulations of rare events that would otherwise fall outside the scope of classical and
ab initio simulations [1-3].
The combination of these methods makes it possible to observe various chemical-physical processes,
for the first time with ab initio-like quality, taking full account of dynamics. A revealing example is the
study of the dynamics of the iron (111) surface at high temperatures and its influence on the
decomposition of N2 [4-5], which is believed to be the rate-limiting step for the famed Haber-Bosch
process. We observed how, under operating conditions, atoms on the surface become highly mobile,
active sites are continuously formed and broken, and the reaction profile is different from that at low
temperatures. If we then consider the effect of a finite coverage of nitrogen atoms on the surface, we
again find two different behaviors depending on temperature. At room temperature, the N atoms poison
the catalyst by blocking the active sites. In contrast, at high temperatures, poisoning is greatly
diminished through the formation of triangular motifs that cause the N atoms to cluster together. These
results highlight the danger of extrapolating low-temperature results to operando conditions and
indicate that catalytic activity can only be inferred from calculations that fully account for dynamics.
Finally, I will show how machine learning methods can be used to learn collective variables for
enhancing sampling directly from atomistic data. In particular, | will discuss a general multi-task learning
framework in which multiple objective functions and data from different simulations can be combined to
design CVs and the implementation of such methods in the micolvar library [6].
[1] L. Bonati, M. Parrinello, Phys. Rev. Lett., 121, 265701 (2018)
[2] H. Niu, L. Bonati, P. Piaggi, M. Parrinello, Nat. Commun., 11, 2654 (2020)
[3] M. Yang, L. Bonati, D. Polino, M. Parrinello, Catalysis Today, 387, 143 (2022)
[4] L. Bonati, D. Polino, C. Pizzolitto, P. Biasi, R. Eckert, S. Reitmeier, R. Schlégl, M. Parrinello, The role of
dynamics in heterogeneous catalysis: surface diffusivity and N2 decomposition on Fe(111), 2023
[5] S. Tripathi, L. Bonati, S. Perego, M. Parrinello, How poisoning is avoided in a step of relevance to the Haber-
Bosch catalysis, 2023
[6] L. Bonati, E. Trizio, A. Rizzi, M. Parrinello, The Journal of Chemical Physics, 159 (2023)
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Machine learning to accelerate reaction discovery
Julia Maria Westermayr, Rhyan Barrett
Leipzig University, Germany

Chemical reactions are fundamental to drive the transformation of matter and are pivotal across diverse
domains like medicine, materials science, and energy generation. In this talk, we will explore the
potential of machine learning algorithms to explore the discovery of chemical reactions. Specifically, we
will illustrate the proficiency of deep neural networks in accelerating the prediction of excited-state
properties, thereby enhancing our understanding of the photodynamics in organic molecules [1,2].
Additionally, we will showcase the efficiency of reinforcement learning in expediting exploration through
the vast expanse of chemical structure space [3].

[1] J. Westermayr, P. Marquetand, Chem. Rev., 121, 9873 (2020)

[2] J. Westermayr, M. Gastegger, D. Voros, L. Panzenboeck, F. Joerg, L. Gonzalez, P. Marquetand, Nat. Chem.,

14, 914 (2022)
[3] R. Barrett and J. Westermayr, arXiv:2310.03511 (2023)

Modelling ground and excited state condensed phase processes including
both nuclear quantum effects and high-level electronic structure via machine

learning
Thomas Markland
Stanford University, United States

Obtaining the atomistic structure and dynamics of disordered condensed-phase systems from first
principles remains one of the forefront challenges of chemical theory. Accurately capturing chemical
processes involving light atoms in condensed phase systems requires an accurate treatment of the
electronic potential energy surface as well as nuclear quantum effects. However, due to the system
sizes and timescales required most condensed phase ab initio molecular dynamics simulations have
traditionally been performed using density functional theory and classical dynamics. In this talk, | will
discuss our recent work combining path integral simulations with high-level wavefunction theories for
ground (AFQMC, CCSD, CCSD(T)) and excited state (EOM-CCSD) processes. In particular, | will show
how one can obtain a data-efficient approach to obtain machine-learned condensed-phase potential
energy surfaces using a very small number (£200) of energies by leveraging a transfer learning scheme
starting from lower-tier electronic structure methods which can then be utilized in path integral
simulations to include nuclear quantum effects. | will demonstrate the effectiveness of this approach
with our recent applications to liquid water and the linear and multidimensional electronic spectroscopy
of the green fluorescent protein chromophore in water. By doing this, we uncover the interplay of
dynamical electron correlation and nuclear quantum effects in these systems while providing a general
strategy for efficiently utilizing periodic correlated electronic structure methods to explore disordered
condensed-phase systems.

[1] M. Chen, Y. Mao, A. Snider, P. Gupta, A. Montoya-Castillo, T. Zuehlsdorff, C. Isborn, T. Markland, J. Phys.

Chem. Lett., 14, 6610 (2023)
[2] M. Chen, J. Lee, H. Ye, T. Berkelbach, D. Reichman, T. Markland, J. Chem. Theory Comput., 19, 4510 (2023)
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Nuclear quantum effects in proton transfer reactions

Aran Lamaire, Massimo Bocus, Ruben Goeminne, Sander Vandenhaute, Maarten Cools-
Ceuppens, Toon Verstraelen, Veronigue Van Speybroeck

Ghent University, Belgium

Proton transfer reactions are omnipresent in chemical processes. Due to the light mass of the proton,
an adequate description of nuclear quantum effects (NQES) is indispensable to model these reactions.
Starting from three typical molecular proton transfer reactions, this talk demonstrates the impact of a
proper description of the quantum free energy profile [1], which can differ significantly from the semi-
classical free energy profile of the ring polymer centroid in path integral molecular dynamics (PIMD)
simulations. Through the use of neural network machine learning potentials (MLPs), free energy
calculations involving enhanced sampling can be easily performed for a wide range of temperatures
with a systematic inclusion of NQEs.
This concept is further elaborated by broadening the scope from molecular systems to a hanoporous
material, to study proton hopping in the chabazite zeolite. Besides the influence of NQEs on the free
energy of the proton hopping, also the hopping kinetics are studied, as well as the kinetic isotope effect
on the hopping. By relying on an efficient approach to generate the data required to train an MLP, the
use of MLPs in combination with NQEs and enhanced sampling is steadily becoming a standard
practice, even for large nanoporous materials. [3]
[1] A. Lamaire, M. Cools-Ceuppens, M. Bocus, T. Verstraelen, V. Van Speybroeck, J. Chem. Theory Comput., 19,
18 (2022
[2] M. éocus? R. Goeminne, A. Lamaire, M. Cools-Ceuppens, T. Verstraelen, V. Van Speybroeck, Nat. Commun.,
14, 1008 (2023)
[3] S. Vandenhaute, M. Cools-Ceuppens, S. DeKeyser, T. Verstraelen, V. Van Speybroeck, npj. Comput. Mater.,
9, 19 (2023)

Nuclear quantum effects in reactive simulations: Path integral case studies
Simon Huppert
Sorbonne Université, France

Nuclear quantum effects such as zero-point energy and tunneling can affect chemical reactions, usually
increasing the associated rate. Though fully quantum simulation of the reactive nuclear dynamics is not
numerically feasible in general, different approximate methods can be used to account for quantum
effects in reaction rate calculations. In particular, we will focus on the ring-polymer rate theory, a path-
integral based method that has proved able to capture both zero-point energy and tunneling with a good
accuracy. After briefly reviewing their theoretical basis, we will illustrate the possibilities of ring-polymer
simulations with two applications. First, we will show how tunneling dramatically affects the low-
temperature rate of the Cope rearrangement of semibulvalene, despite the relatively large mass of the
atoms involved in the reaction (carbon). Second, we will present a ring-polymer study of the double
proton transfer dynamics in Guanine-Cytosine base pairs. We will analyze how this process (proposed
in literature as a potential mechanism of appearance of DNA mutations) is accelerated by nuclear
guantum effects, but also crucially affected by the influence of the molecular environment surrounding
the base pair.

Quantum nuclear effects in anharmonic phonon calculations for large systems
Sara Bonella
CECAM HQ, Switzerland

The analysis of lattice vibrations provides vital information on a variety of material properties. When the
material contains light ions or is subjected to temperatures and/or pressures deviating significantly from
ambient conditions, anharmonic and quantum effects may alter its phonon characteristics. Simulating
these effects, however, comes at a numerical cost still too high to model large systems within a first
principle model of the interactions. Here, we present an approach that facilitates anharmonic quantum
phonon calculations via accurate and relatively low cost ab initio molecular dynamics. We leverage the
power of the recently introduced mass zero constrained dynamics in the orbital free DFT framework [1],
together with a computational framework that relates anharmonic phonon spectra to time correlation
functions [2]. Path integral and quantum thermal bath dynamics are employed and compared to
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incorporate quantum nuclear effects. The performance of the approach is illustrated by simulations of
metallic lithium.

[1] A. Coretti, T. Baird, R. Vuilleumier, S. Bonella, The Journal of Chemical Physics, 157 (2022)
[2] T. Morresi, L. Paulatto, R. Vuilleumier, M. Casula, J. Chem. Phys., 154, 224108 (2021)

Realistic phase diagram of water from first principles
Sigbjarn Bore?, Francesco Paesani?

tUniversity of Oslo, Norway

2University of California, San Diego, United States

Since the experimental characterization of the low-pressure region of water’s phase diagram in the early
1900s, scientists have been on a quest to understand the thermodynamic stability of ice polymorphs on
the molecular level. In this presentation, | will talk about our recent work combining the MB-pol many-
body potential for water with advanced enhanced sampling algorithms for simulations of water’s phase
diagram with unprecedented realism. Besides providing fundamental insights into how enthalpic,
entropic, and nuclear quantum effects shape the free-energy landscape of water, our work
demonstrates how recent progress in data-driven simulations opens the door to realistic computational
studies of complex molecular systems, bridging the gap between experiments and simulations.

Semiclassical investigation of nuclear quantum effects in chemical kinetics
and vibrational spectroscopy

Chiara Donatella Aieta

Universita degli Studi di Milano, Italy

Nuclear Quantum Effects (NQE) manifest in chemistry in both kinetics and spectroscopy fields.

Accounting for the Zero Point Energy (ZPE) and tunneling phenomena can explain unexpected

experimental observations of reaction rate constants.[1,2] Also, in spectroscopy, some spectral

features, such as signal splittings or shifts, are due to tunneling phenomena or quantum delocalization

(or localization), which cause the system to sample the potential energy surface in a non-classical

way.[3,4] Rigorous but at the same time, affordable methods to include NQE in atomistic simulations

must be developed to predict and explain experimental quantum mechanical hallmarks. This talk will

describe semiclassical approaches for kinetics and spectroscopic applications. Specifically, the

Semiclassical Transition State Theory (SCTST) can include tunneling and ZPE effects at a higher level

of theory than widespread tunneling corrections for classical TST rate calculations.[5-7] Then, the

Semiclassical Initial Value Representation Molecular Dynamics (SC-IVR-MD) can predict accurate

vibrational spectra and even reproduce vibrational quantum eigenfunctions.[9,10] Thus, the SC-IVR-

MD technique can reproduce the qguantum mechanical sampling of the potential energy surface, fixing

purely classical MD vibrational spectroscopy pitfalls.[11]

[1] J. Meisner, J. Kastner, Angew. Chem. Int. Ed., 55, 5400 (2016)

[2] P. Schreiner, Trends in Chemistry, 2, 980 (2020)

[3] F. Gabas, G. Di Liberto, R. Conte, M. Ceotto, Chem. Sci., 9, 7894 (2018)

[4] R. Conte, A. Aspuru-Guzik, M. Ceotto, J. Phys. Chem. Lett., 4, 3407 (2013)

[5] W. Miller, R. Hernandez, N. Handy, D. Jayatilaka, A. Willetts, Chemical Physics Letters, 172, 62 (1990)

[6] C. Aieta, F. Gabas, M. Ceotto, J. Phys. Chem. A, 120, 4853 (2016)

[7] C. Aieta, F. Gabas, M. Ceotto, J. Chem. Theory Comput., 15, 2142 (2019)

[8] G. Mandelli, C. Aieta, M. Ceotto, J. Chem. Theory Comput., 18, 623 (2022)

[9] C. Aieta, M. Micciarelli, G. Bertaina, M. Ceotto, Nat. Commun., 11, 4348 (2020)

[10] C. Aieta, G. Bertaina, M. Micciarelli, M. Ceotto, The Journal of Chemical Physics, 153 (2020)

[11] R. Conte, C. Aieta, G. Botti, M. Cazzaniga, M. Gandolfi, C. Lanzi, G. Mandelli, D. Moscato, M. Ceotto, Theor.
Chem. Acc., 142, 53 (2023)
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Synergy between physics and machine learning for property prediction of
organic systems

Leonardo Medrano Sandonas, Mirela Puleva, Alexandre Tkatchenko

University of Luxembourg, Luxembourg

Machine learning has been proven to be an extremely valuable tool for simulations with ab-initio
accuracy at the computational cost between classical interatomic potentials and density-functional
approximations. Similar efficiency can only be achieved by semi-empirical (SE) methods such as
density-functional tight-binding (DFTB). However, shortcomings still exist in the pairwise DFTB
repulsive component and the treatment of long-range (e.g., electrostatics and van der Waals)
interactions in non-covalent systems. Therefore, building on our previous work (DFTB+NNrep) [1], we
have developed a scalable methodology that corrects the DFTB repulsive potential to a many-body
potential via the use of an equivariant neural network (NN), which considers local and non-local physical
interactions [2]. Moreover, a many-body dispersion treatment is applied to describe van der Waals
interactions, which are crucial to investigate large/more flexible molecules and molecular dimers. Our
many-body NNrep potential is trained to fit the PBEO-level data for single molecules from the QM7-X
dataset [3] and the resultant model is tested rigorously. Firstly, DFTB+NNrep shows an improvement in
capturing intramolecular interactions as illustrated by the prediction of rotational energy profiles for
organic molecules of increased size and flexibility compared to the training set. Furthermore, despite
not training on non-covalent systems, our model predicts accurately the interaction energy of the
molecular dimers from the s66x8 dataset as well as that of large molecular clusters extracted from the
X23 molecular crystals dataset. Hence, our ML-corrected DFTB approach combines scalability and
generalisability with improved accuracy. Thus, we conclude that finding an optimal synergy between
SE and NN methods is key to the development of reliable models for the computation of
physicochemical properties of diverse molecular systems.
[1] M. Stbhr, L. Medrano Sandonas, A. Tkatchenko, J. Phys. Chem. Lett., 11, 6835 (2020)
[2] O.T. Unke et al. ,arXiv:2205.08306 (2022)
[3] L. Medrano Sandonas, J. Hoja, B. Ernst, A. Vazquez-Mayagoitia, R. DiStasio, A. Tkatchenko, Chem. Sci., 14,
10702 (2023)

Thermal dependence of the hydrated proton and optimal proton transfer in the
protonated water hexamer

Michele Casula?, Félix Mouhat?, Matteo Perial, Tommaso Morresi®, Rodolphe Vuilleumier?,
Marco Saitta?

!Sorbonne Université & CNRS, France

2Saint Gobain Research, France

3ECT-Fondazione Bruno Kessler, Italy

*PASTEUR, Département de Chimie, Ecole normale supérieure, France

Water is a key ingredient for life and plays a central role as solvent in many biochemical reactions.
However, the intrinsically quantum nature of the hydrogen nucleus, revealing itself in a large variety of
physical manifestations, including proton transfer, gives rise to unexpected phenomena whose
description is still elusive. By a combination of state-of-the-art quantum Monte Carlo methods and path-
integral molecular dynamics, we study the structure and hydrogen-bond dynamics of the protonated
water hexamer, the fundamental unit for the hydrated proton. We find a remarkably low thermal
expansion of the hydrogen bond from zero temperature up to 300 K, owing to the presence of short-
Zundel configurations, characterized by proton delocalization and favored by the synergy of nuclear
guantum effects and thermal activation. The hydrogen bond strength progressively weakens above 300
K, when localized Eigen-like configurations become relevant. Our analysis, supported by the instanton
statistics of shuttling protons, reveals that the near-room-temperature range from 250 K to 300 K is
optimal for proton transfer in the protonated water hexamer. We finally discuss how the accurate but
expensive quantum Monte Carlo method used to compute the nuclear forces can be replaced by
machine learning potentials, with the aim at extending this study to larger clusters up to the bulk water.

[1] F. Mouhat, M. Peria, T. Morresi, R. Vuilleumier, A. Saitta, M. Casula, Nat. Commun., 14, 6930 (2023)
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Towards exact molecular dynamics with machine-learned force fields
Alexandre Tkatchenko
University of Luxembourg, Luxembourg

The convergence between accurate quantum-mechanical (QM) models (and codes) with efficient
machine learning (ML) methods seem to promise a paradigm shift in molecular simulations. Many
challenging applications are now being tackled by increasingly powerful QM/ML methodologies. These
include modeling covalent materials, molecules, molecular crystals, surfaces, and even whole proteins
in explicit water [1].
In this talk, | attempt to provide a reality check on these recent advances and on the developments
required to enable fully quantum dynamics of complex functional (bio)molecular systems. Multiple
challenges are highlighted that should keep theorists in business for the foreseeable future:

1. Ensuring the accuracy of high-level QM methods [2].

2. Describing intricate QM long-range interactions [3-4-5].

3. Treating quantum electrodynamic effects that become relevant for complex molecules [6-7].

4. Developing increasingly accurate, efficient, scalable, and transferable ML architectures for

molecules and materials [8, 1, 9].
5. Accounting for the quantum nature of the nuclei and the influence of external environments [10-
11].

| argue that only a conjunction of all these developments will enable the long-held dream of fully
guantum (bio)molecular simulations.
[1] O. T. Unke, M. Stohr, S. Ganscha, T. Unterthiner, H. Maennel, S. Kashubin, D. Ahlin, M. Gastegger, L. Medrano

Sandonas, A. Tkatchenko, K.-R. Muller, Chem. Phys. (2022)
[2] Y. Al-Hamdani, P. Nagy, A. Zen, D. Barton, M. Kéllay, J. Brandenburg, A. Tkatchenko, Nat. Commun., 12, 3927

2021
[3] I\(/I Sté)hr, A. Tkatchenko, Sci. Adv., 5 (2019)
[4] A. Ambrosetti, N. Ferri, R. DiStasio, A. Tkatchenko, Science, 351, 1171 (2016)
[5] P. Hauseux, A. Ambrosetti, S. Bordas, A. Tkatchenko, Phys. Rev. Lett., 128, 106101 (2022)
[6] M. Karimpour, D. Fedorov, A. Tkatchenko, J. Phys. Chem. Lett., 13, 2197 (2022)
[7] M. Karimpour, D. Fedorov, A. Tkatchenko, Phys. Rev. Research, 4, 013011 (2022)
[8] H. Sauceda, L. Galvez-Gonzalez, S. Chmiela, L. Paz-Borbon, K. Miiller, A. Tkatchenko, Nat. Commun., 13,

3733 (2022)
[9] A. Kabylda, V. Vassilev-Galindo, S. Chmiela, I. Poltavsky, A. Tkatchenko, Chem. Phys., (2023)
[10] H. Sauceda, V. Vassilev-Galindo, S. Chmiela, K. Muller, A. Tkatchenko, Nat. Commun., 12, 442 (2021)
[11] A. Ambrosetti, P. Umari, P. Silvestrelli, J. Elliott, A. Tkatchenko, Nat. Commun., 13, 813 (2022)
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4. Posters

Controlling the band gap of graphene with vacancies
Diyan Unmu Dzujah, Hongde Yu, Thomas Heine
Technische Universitat Dresden, Germany

Graphene is composed of light-weight atoms, making the spin-orbit coupling (SOC) is weak and yields
only tiny band gaps that limit its applications [1]. In planar carbon lattices, a sizable band gap can be
opened by quantum confinement (size control), structural elements as coves, chirality (edge control),
and by chemical perturbation [2,3]. The Tight Binding (TB) approximation is a suitable method to check
the roles of the 1T orbital in graphene and elucidate its effects in structural change of graphene towards
the electronic properties. In this study, variations of defects in graphene were calculated by removing
the A and B sublattices of graphene. The same number of sublattice A and B can induce band gap in
graphene, while inequal number of sublattices removal induces flat bands on Fermi energy level. In
further study, it is essential to validate the results obtained from TB and compare them with experiments
by using a more accurate calculation such as DFT. However, larger structure demands more
computational resources, and machine learning can be an appropriate method for the larger structure
calculations.

[1] C. Kane, E. Mele, Phys. Rev. Lett., 95, 226801 (2005)

[2] L. Gao, J. Sun, G. Sethi, Y. Zhang, S. Du, F. Liu, Nanoscale, 11, 22743 (2019)
[3] M. Springer, T. Liu, A. Kuc, T. Heine, Chem. Soc. Rev., 49, 2007 (2020)

Dynamics of AlF-AlF: Potential energy surface and intermediate complex
characterization

Xiangyue Liu?!, Weiqgi Wang?, Jesls Pérez-Rios?

Fritz Haber Institute of the Max Planck Society, Germany

2Department of Physics and Astronomy, Stony Brook University, United States

AlF plays a crucial role in astrochemistry as a tracer for F-bearing molecules. Additionally, AlF exhibits
diagonal Franck-Condon factors and can be efficiently produced in the laboratory, making it a
prototypical molecule for laser cooling. Despite these attributes, little is known about the reaction
dynamics of AlF, particularly concerning the formation of AIF-AIF dimer complexes. Such complexes
can lead to molecular loss and are, therefore, considered undesirable.

This study delves into the reaction dynamics of the AIF-AIF system. We have developed an accurate
machine-learning full-dimensional potential energy surface (PES) for the AlF-AIF complex, focusing on
regions relevant to dynamics. Utilizing this PES, ab initio molecular dynamics simulations were
conducted for the AIF-AIF system within an active-learning framework. Consequently, we identify the
primary reaction mechanisms and the lifetime of the intermediate complex AIF-AIF, providing insights
into astrochemistry environments and regions within buffer gas cells.

[1] X. Liu, W. Wang, J. Pérez-Rios, The Journal of Chemical Physics, 159 (2023)

[2] W. Wang, X. Liu, J. Pérez-Rios, arXiv:2307.12416 (2023)
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Gas-phase sugar synthesis

Weigi Wang?, Hunarpreet Kaur?, Sandra Briinken?, Jesls Pérez Rios®

Fritz Haber Institute of the Max Planck Society, Germany

2FELIX Laboratory, Faculty of Science, Radboud University, Nijmegen, Netherlands
3Department of Physics and Astronomy, Stony Brook University, New York, United States

The inquiry regarding the commencement and process of prebiotic synthesis within our universe
remains central to the origins of life puzzle. Presently, the understanding of the role and efficiency of
chemical pathways leading to complexity remains fragmented and primarily experienced. One of the
fundamental initial steps in comprehending prebiotic synthesis is the exploration of pathways involved
in the creation of simple sugars. The theoretical component of this project elucidates the intricate
reaction networks governing the genesis of protonated glycolaldehyde, which signifies the initial stage
in sugar synthesis. Utilizing the ab initio molecular dynamics method, exploration of the entire relevant
phase space has been accomplished. Consequently, it becomes feasible to construct a comprehensive
reaction network outlining the formation of protonated glycolaldehyde. In order to identify the species
observed in the IR experiments, IR spectra are calculated from simulations under finite ensemble
temperatures or specific kinetic temperature conditions. Additionally, the thermodynamic conditions
within the experimental chamber are determined.

High-dimensional neural networks as reactive potentials for ML/MM
simulations of thiol-disulfide exchange reactions

Lukas Petersen, Christian Schmidt

Karlsruhe Institut of Technology, Germany

In order to describe biochemical processes a hybrid quantum mechanical/molecular mechanical

(QM/MM) approach can be applied. Typically, semi-empirical methods, such as density functional tight-

binding (DFTB), are used as the QM method due to the computational cost of numerous calculations.

While DFTB is 2-3 orders of magnitudes faster than DFT, their approximations lead to deviations from

higher level methods [1].

In our ongoing research we are dedicated to training a 4th generation High-Dimensional Neural Network

Potential [2] incorporating environmental effects during QM/MM-calculations. This involves including

the electrostatic potential caused by MM-zone in order to calculate the electrostatic interaction between

QM- and MM-zone within the electrostatic embedding scheme. This network is trained using structures

of the thiol-disulfide exchange reaction, a process known for its strong dependence on the surrounding

environment [3,4].

This poster provides additional technical details to the identically named talk.

[1] C. Gémez-Flores, D. Maag, M. Kansari, V. Vuong, S. Irle, F. Gréter, T. Kubar, M. Elstner, J. Chem. Theory
Comput., 18, 1213 (2022)

[2] T. Ko, J. Finkler, S. Goedecker, J. Behler, Nat. Commun., 12, 398 (2021)

[3] M. Putzu, F. Gréter, M. Elstner, T. Kubar, Phys. Chem. Chem. Phys., 20, 16222 (2018)

[4] D. Maag, M. Putzu, C. Gbmez-Flores, F. Gréter, M. Elstner, T. Kubar, Phys. Chem. Chem. Phys., 23, 26366
(2021)

Inferring free-energy barriers and kinetic rates from MD via Langevin models
David Girardier!, Hadrien Vroylandt?, Sara Bonella?, Fabio Pietruccit

1Sorbonne Université, France

2CECAM, Switzerland

Rare events include many of the most interesting transformation processes in condensed matter, from
phase transitions to biomolecular conformational changes to chemical reactions. Access to the
corresponding mechanisms, free-energy landscapes and kinetics (mean first passage time MFPT) can
be obtained by projecting the high-dimensional atomic dynamics on one (or a few) collective variable
(CV). The projected dynamics then approximately follows in a statistical sense the generalized,
underdamped or overdamped Langevin equations depending on the time resolution. In this work we
focus on Markovian, underdamped Langevin equations, that arise naturally when considering numerous
water-solution processes at sub-picosecond resolution such as fullerenes dimer dissociation. We
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present an efficient parametrization strategy based on a limited set of molecular dynamics (MD) data,
including equilibrium trajectories confined to minima and ~100 transition path sampling (TPS)
trajectories. Employing velocity autocorrelation function (VACF) for learning the friction, likelihood
maximization for learning the free-energy landscape and coordinate transformation for the mass.

Molecular dynamics simulations of deep eutectic systems using machine
learning interatomic potentials

Omid Shayestehpour, Stefan Zahn

Leibniz Institute of Surface Engineering, Germany

Deep eutectic systems (DESs) are an emerging class of compounds characterized by melting points

significantly lower than their individual components. They have many desirable characteristics such as

low vapor pressure, thermal stability, and tunable properties, which makes them suitable candidates for

room-temperature solvents and electrolytes [1].

We have investigated the ability of machine-learned (ML) interatomic potentials for molecular dynamics

(MD) simulations of these liquids, showcasing a trained neural network potential for a 1:2 ratio mixture

of choline chloride and urea. Using the ML potentials trained on density-functional theory (DFT) data,

accurate MD simulations for large systems of thousands of atoms and nanoseconds-long time scales

are feasible at a fraction of the computational cost of the target DFT simulations [2].

[1] B. Hansen, S. Spittle, B. Chen, D. Poe, Y. Zhang, J. Klein, A. Horton, L. Adhikari, T. Zelovich, B. Doherty, B.
Gurkan, E. Maginn, A. Ragauskas, M. Dadmun, T. Zawodzinski, G. Baker, M. Tuckerman, R. Savinell, J.
Sangoro, Chem. Rev., 121, 1232 (2020)

[2] O. Shayestehpour, S. Zahn, Efficient molecular dynamics simulations of deep eutectic solvents with first-
principles accuracy using machine learning interatomic potentials (2023)

Path integrals and neural networks as force field and analysis tools to study
concerted connectivity changes

Emilio Mendez?, Daniel Laria?, Rocio Semino*

1Sorbonne Université, France

2Departamento de Materia Condensada, Comision Nacional de Energia Atomica, Argentina

We present results from ring polymer molecular dynamics simulations of collective proton transfers in
water-ammonia clusters [1]. A neural network potential is trained using configurations from path integral
trayectories constrained with umbrella sampling techniques to gather statistics along all the reaction
pathway.

In analogy, we also show results of Zn-N bond braking/formation in ZIF-4 metal organic frameworks,
using neural networks as an analysis tool to identify environments of different possible phases during
the simulations [2].

[1] E. Méndez, P. Videla, D. Laria, J. Phys. Chem. A, 127, 1839 (2023)

[2] S. Balestra, R. Semino, The Journal of Chemical Physics, 157 (2022)

Reinforcement learning for traversing chemical structure space
Rhyan Barrett, Julia Westermayr
Leipzig University, Germany

Recent advancements in deep learning have outpaced human performance in many complex tasks like
protein structure prediction of games like Go. In quantum chemistry, machine learning has mainly been
used for prediction and design, while reinforcement learning is still in its early stages. This study
introduces an actor-critic reinforcement learning framework for diverse optimization tasks, such as
exploring molecular structures in conformational spaces. We showcase its efficacy by accurately
predicting minimum energy pathways for chemical reactions, specifically Claisen rearrangement and
SN2 reactions. This demonstrates the promising application of actor-critic methods in studying chemical
reactions
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Simulating a solid para-hydrogen matrix using path integrals
Archy Tripathi, Harald Forbert, Dominik Marx
Ruhr-Universitat Bochum, Germany

Solid parahydrogen matrices have been successfully used in matrix isolation spectroscopy experiments
[1,2] at low temperatures (3-5 K) to host molecular impurities. These matrices provide a gentle
environment, allowing for studies of exotic molecules or labile intermediates hardly accessible by
conventional spectroscopic tools. However, not much is known about how small molecules get
embedded in these matrices. In order to facilitate better understanding of their quantum solvation, we
use quantum simulation techniques like Path Integral Molecular Dynamics (PIMD) [3] and Ring Polymer
Molecular Dynamics (RPMD) [4] to simulate this quantum solid. A crucial foundational step here is to
accurately generate a pure solid para-hydrogen matrix with a realistic structure. To this end, we mimick
the experimental deposition of the matrix within the simulation as accurately as possible. The
desposition protocol involves launching a new molecule with a random velocity towards an equilibrated,
4-layered slab of parahydrogen molecules and then thermalized to let it settle on top. This process is
repeated until the desired size of the deposited matrix has been attained. Multiple different runs of the
simulation protocol are seen to produce different structures of the solid matrix.

[1] T. Momose, T. Shida, BCSJ., 71, 1 (1998)

[2] Y. Lee, Y. Wu, R. Lees, L. Xu, J. Hougen, Science, 311, 365 (2006)

[3] M. Tuckerman, 'Statistical Mechanics: Theory and Molecular Simulation', Oxford University Press, Oxford (2010)
[4] I. Craig, D. Manolopoulos, The Journal of Chemical Physics, 121, 3368 (2004)

Validating an Mg-H potential learnt "on-the-fly" for nuclear quantum effects
calculations

Kai Sellschopp

Helmholtz-Zentrum Hereon, Germany

In a sustainable economy built on renewable energy, hydrogen plays a key role for storing energy and
replacing fossil fuels. An efficient way to store hydrogen is to keep it in the solid state by binding it
chemically in a metal hydride, which is particularly useful for seasonal energy storage or for applications
where safety is a concern. Despite the fact that hydrogen is known to show nuclear quantum effects
(NQE) even at higher temperatures, these have been neglected in computational studies of metal
hydrides so far due to the high cost of path-integral molecular dynamics calculations. In this work, a
machine-learned potential (MLP) is trained for the Mg-H system, a well-known hydrogen storage
material, in order to speed up the simulations and bring down the cost. At the same time, the sample
collection is accelerated by training the potential "on-the-fly" during classical molecular dynamics runs,
where ab-initio calculations are replaced by the MLP whenever the estimated errors are low enough.
Here, | present how the training of this MLP is monitored and how the accuracy for NQE calculations
can be validated afterwards.
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