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General Information

Contact & Important Information

Website

https://www.cecam.org/workshop-details/1322
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Data Protection Information
according to Art. 13, 14 and 21 of the General Data Protection Reg-
ulation (GDPR) 
Creation of photos

We will be taking photographs at this workshop, and this data will be shared accord-
ing to the GDPR compliant guidelines of the Fritz Haber Institute of the Max Planck 
Society. Please see the QR code for further information about data protection. 

Data protection is an important concern for us. Below we inform you how we process your data and
which rights you have.

1. Processing purposes and legal basis
Your personal data will be processed in accordance with the provisions of the General Data Protec-
tion Regulation (GDPR), the Federal Data Protection Act (BDSG) and other relevant data protection
regulations. In the case of photographs, the Art Copyright Act will apply in the event of possible publi-
cation. 

1.1 Consent (Art. 6 para. 1 lit a GDPR)
By signing in at registration, you give us consent to the processing of personal data, which is the legal
basis for the processing mentioned here. You can revoke your consent at any time with effect for the
future. If you don’t want to give your consent, please affix one of the “No Photos” stickers (available
at registration) onto your nametag.

1.2 Press and public relations (Art. 6 para. 1 lit f GDPR)
Photographs are processed for press and public relations work and reporting to the funding agencies. 

2. Categories of personal data processed by us
The following data is collected/created and further processed:

 Photographs

3. Who receives the data?
We pass on your personal data within our company to the divisions, who need this data to fulfil their
contractual and legal obligations or to implement our legitimate interest.  Internet presences of the
funding agencies and the Fritz Haber Institute of the Max Planck Society also record presences in so-
cial networks such as Mastodon. Information on their terms of use can be found in the data protection
declaration (see QR code above). 

4. How long do we store your data?
If necessary, we process your personal data for the duration of our business relationship or the dura-
tion of publication. The specified periods for storage or documentation are up to ten years after the
end of the business relationship or the pre-contractual legal relationship. Ultimately, the storage pe-
riod is also assessed according to the statutory limitation periods and it is regularly checked whether
data can be deleted.
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5. Your privacy rights
You have the right of Information pursuant to Art. 15 GDPR, the right of rectification pursuant to Art.
16 GDPR, the right of deletion pursuant to Art. 17 GDPR, the right of restriction of processing pur-
suant to Art. 18 GDPR and the right of data transfer pursuant to Art. 20 GDPR. In addition, there is a
right of appeal to a data protection supervisory authority (Art. 77 GDPR). 

6. Your right to appeal to the competent supervisory authority
You have the right to appeal to the data protection supervisory authority (Art. 77 GDPR). The supervi -
sory authority responsible is:

Heidi Schuster
Max Planck Society for the Advancement of Science e.V. (MPG)
Hofgartenstrasse 8
D-80539 Munich
Telephone: +49 (89) 2108-1554
datenschutz@mpg.de
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Workshop Description
Recently, Machine Learning (ML) methods have penetrated almost all research areas in
materials modelling and high-throughput materials screening. And yet the ML triumph has
so far mainly focused on developing surrogate models for the potential energy surface
(PES) with superior computational efficiency while retaining first principles accuracy. The
approach to learn observable properties directly is just emerging and is challenged by sev-
eral issues, which we intend to address.
The event is meant to support the development of a new collaborative, international net-
work connecting different fields of research and integrating the young researchers commu-
nity with the help of a scientifically diverse, interactive workshop.

Topics:
 ML of electron density and Hamiltonians
 ML of electronic observables
 ML of mechanical & magnetic observables
 ML of spectroscopic observables 
 ML of reaction networks
 Theoretical and experimental databases

Objectives

The majority of materials modelling with ML methods represents the (PES) of a material
based on the assumption, that the total energy of the system can be decomposed into
atomic contributions, which in a first approximation are described as a function of the local
atomic environment [1,2]. However, several observables such as charge transfer, dipoles,
and the material’s properties in an applied electric field are inherently non-local properties.
First approaches [3,4] are able to include long range interactions in models for interatomic
potentials. It remains an open question if or how these or other methods can be adapted
for ML models of non-local observables.
In contrast to the scalar potential energy of a system, many properties are either vectors,
like dipoles, or high rank tensors, like electric field gradients, or more complex properties,
like density of states. First implementations encode tensorial properties in either rotation-
ally invariant or equivariant representations [5-7]. Other approaches aim to learn the entire
electron density in order to derive the observables [8-10]. However, the practical applica-
tion to physical observables is still very limited. An open discussion of the concepts is nec-
essary and will provide an essential contribution to the dissemination of the methods within
the community.
The  majority  of  materials  and  their  observables  are  unambiguously  described  by  the
atomic structure features. Some properties however also depend on spin states, magnetic
arrangement  or  atomic  charges.  Including  information  like  atomic  magnetic  vectors  or
atomic charges in the feature vector is challenging and not many approaches exist [11,12]
to solve the problem, which needs to be addressed to model key properties like charge
transfer and spin waves.
The accuracy and performance of any ML model depends critically on the extent and di-
versity of its training dataset. The different available databases [13-16] of ‘synthetic’ first
principle material properties provide a valuable wealth of information, but approaches to
combine data have yet to be developed. Other databases [17-19] complement the avail-
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able information by experimental data. The question remains, whether or how to combine
experimental  and  theoretical  data  on  equal  footing  in  order  to  pool  the  available  re-
sources.The workshop aims to tackle the challenges in the fledgling field of ML of observ-
ables covering spectroscopic, electronic, thermodynamic, magnetic, and mechanical prop-
erties as well as ML approaches to predict the electron density.
We  gratefully  acknowledge  the  support  by  CECAM,  the  Psi-k  Charity,  Deutsche
Forschungsgemeinschaft, and the Max-Planck-Gesellschaft.

Key References
[1] M. Langer, A. Goeßmann, M. Rupp, npj. Comput. Mater., 8, 41 (2022)
[2] Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A. Shapeev, A. Thompson, M. Wood, S. Ong, J. Phys.
Chem. A, 124, 731-745 (2020)
[3] T. Ko, J. Finkler, S. Goedecker, J. Behler, Nat. Commun., 12, 398 (2021)
[4] C. Staacke, H. Heenen, C. Scheurer, G. Csányi, K. Reuter, J. Margraf, ACS Appl. Energy Mater.,  4, 12562-12569
(2021)
[5] A. Grisafi, D. Wilkins, G. Csányi, M. Ceriotti, Phys. Rev. Lett., 120, 036002 (2018)
[6] V. Nguyen, A. Lunghi, Phys. Rev. B, 105, 165131 (2022)
[7] S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. Mailoa, M. Kornbluth, N. Molinari, T. Smidt, B. Kozinsky, Nat. Com-
mun., 13, 2453 (2022)
[8] M. Gastegger, A. McSloy, M. Luya, K. Schütt, R. Maurer, J. Chem. Phys., 153, 044123 (2020)
[9] B. Focassio, M. Domina, U. Patil, A. Fazzio, S. Sanvito, npj. Comput. Mater., 9, 87 (2023)
[10] J. Nigam, M. Willatt, M. Ceriotti, J. Chem. Phys., 156, 014115 (2022)
[11] M. Domina, M. Cobelli, S. Sanvito, Phys. Rev. B, 105, 214439 (2022)
[12] M. Eckhoff, J. Behler, npj. Comput. Mater., 7, 170 (2021)
[13] S. Curtarolo, W. Setyawan, G. Hart, M. Jahnatek, R. Chepulskii, R. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M.
Mehl, H. Stokes, D. Demchenko, D. Morgan, Computational Materials Science, 58, 218-226 (2012)
[14] C. Draxl, M. Scheffler, J. Phys. Mater., 2, 036001 (2019)
[15] A. Jain, S. Ong, G. Hautier, W. Chen, W. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. Pers -
son, APL Materials, 1,  (2013)
[16] S. Kirklin, J. Saal, B. Meredig, A. Thompson, J. Doak, M. Aykol, S. Rühl, C. Wolverton, npj. Comput. Mater.,  1,
15010 (2015)
[17] C. Groom, I. Bruno, M. Lightfoot, S. Ward, Acta. Crystallogr. Sect. B., 72, 171-179 (2016)
[18] D. Zagorac, H. Müller, S. Ruehl, J. Zagorac, S. Rehme, J. Appl. Cryst., 52, 918-925 (2019)
[19] H. Sun, S. Dwaraknath, H. Ling, X. Qu, P. Huck, K. Persson, S. Hayes, npj. Comput. Mater., 6, 53 (2020)

 Page 8 of 45



Program Overview

 Page 9 of 45



Detailed Program

Monday July 8th

12:45 – 13:45 Registration *
13:45 – 14:00 Welcome

14:00 – 16:45 Session Thermodynamic Observables
Chair: Dr. Simone Köcher
14:00 – 14:45 Prof. Dr. Karsten Reuter (FHI Berlin, DE)

Out of the Crystalline Comfort Zone:
Tackling Working Interfaces with Machine Learning

14:45 – 15:15 Dr. Michele Simoncelli (University of Cambridge, UK)

Machine learning opens a wonderland for looking through glasses

15:15 – 15:45 Break
15:45 – 16:15 Dr. Christian Carbogno (FHI Berlin, DE)

Accelerating Transport Coefficient
Predictions via Machine Learning

16:15 – 16:45 Prof. Dr. Nong Artrith (Utrecht University, NL)

Harnessing Machine Learning for Advancing Amorphous Battery Materials

16:45 – 17:30 Discussion

17:30 – 19:00 Poster Session

* Lunch is not provided. You’ll find an ample offer of restaurants and take-
away in the vicinity.
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Tuesday July 9th

09:00 – 11:30 Session Electronic Structure & Long Range Interactions I
Chair: Dr. Elena Gelzinyte
09:00 – 09:45 Prof. Dr. Gábor Csányi (University of Cambridge, UK)

A foundational atomistic model for materials

09:45 – 10:15 Prof. Dr. Janine George (BAM, DE)

High-throughput Approaches for Materials Understanding and Design

10:15 – 10:30 Break
10:30 – 11:00 Sergey Pozdnyakov (EPFL, CH)

Challenging the dogma of rotational equivariance in atomistic ML

11:00 – 11:30 Prof. Dr. Kulbir Ghuman (INRS, CAN)

Leveraging Computational Advances to Design and Optimize
Energy Materials: From Traditional Methods to Machine Learning

11:30 – 12:15 Discussion

12:15 – 14:00 Lunch Break*

14:00 – 16:45 Session Electronic Structure & Long Range Interactions II
Chair: Dr. Hanna Türk
14:00 – 14:45 Prof. Dr. Michele Ceriotti (EPFL, CH)

Machine-learning for electronic structure

14:45 – 15:15 Alexander Knoll (Ruhr-Universität Bochum, DE)

Advanced Software Frameworks for Describing Local and Non-
Local Interactions in High-Dimensional Neural Network Potentials

15:15 – 15:45 Break (& Group Picture)
15:45 – 16:15 Prof. Dr. Reinhard Maurer (University of Warwick, UK)

Electronic Structure Surrogate Learning for Quantum Dynamics
and Inverse Design

16:15 – 16:45 William Baldwin (University of Cambridge, UK)

ML Electrostatics Models in Relevant Test Systems

16:45 – 17:30 Discussion

* Lunch is not provided. 
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Wednesday July 10th

09:00 – 11:30 Session Magnetic Observables
Chair: Dr. Simone Köcher
09:00 – 09:45 Prof. Dr. Stefano Sanvito (Trinity College Dublin, IRL)

The Jacobi-Legendre framework for materials discovery

09:45 – 10:15 Johannes Wasmer (IAS-1 Forschungszentrum Jülich, DE)

Prediction of magnetic exchange interaction in doped topological insulators

10:15 – 10:30 Break
10:30 – 11:00 Prof. Dr. Alessandro Lunghi (Trinity College Dublin, IRL)

Machine Learning for Molecular Magnetism

11:00 – 11:30 Shuping Guo (IFW Dresden, DE)

Machine learning facilitated by microscopic features 
for discovery of novel magnetic double perovskites

11:30 – 12:15 Discussion

12:15 – 14:00 Lunch Break*

14:00 – 16:45 Session Spectroscopic Observables I
Chair: Prof. Dr. Josef Granwehr
14:00 – 14:45 Prof. Dr. Patrick Rinke (Aalto University, FIN)

Machine Learning for Spectroscopy – Concepts, Successes, and Challenges

14:45 – 15:15 Dr. Tigany Zarrouk (Aalto University, FIN)

Experiment-driven atomistic materials modeling: Combining XPS
and MLPs to infer the structure of a-COx

15:15 – 15:45 Break
15:45 – 16:15 Prof. Dr. Rose Cersonsky (University of Wisconsin, USA)

Categorizing three-dimensional photonic crystals: open challenges in 
scale-covariant problems

16:15 – 16:45 Clelia Middleton (Newcastle University, UK)

p-DOS: a descriptor with electronic wisdom for learning X-Ray spectroscopy

16:45 – 17:30 Discussion
18:00 Conference Dinner
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Thursday July 11th

09:00 – 11:30 Session Spectroscopic Observables II
Chair: Dr. Angela Harper
09:00 – 09:45 Prof. Dr. Rebecca Nicholls (University of Oxford, UK)

Interpreting core-loss spectroscopy

09:45 – 10:15 Prof. Dr. Josef Granwehr (IEK-9 FZJ, DE)

Predicting electron paramagnetic resonance parameters and their sensitivity
to structural configuration

10:15 – 10:30 Break
10:30 – 11:00 Prof. Dr. Claudia Draxl (Humboldt-Universität zu Berlin, DE)

Assessing spectroscopic features: from fingerprinting to predictions

11:00 – 11:30 Prof. Dr. Stefan Sandfeld (IAS-9 FZJ, DE)

Scientific Machine Learning and Explainable AI Approaches 
for the Physical Sciences

11:30 – 12:15 Discussion

12:15 – 13:30 Lunch Break*

13:30 – 14:30 Session Electronic Structure & Long Range Interactions III
Chair: Prof. Dr. Janine George
13:30 – 14:00 Luca Leoni (University of Bologna, IT)

Machine learned small polaron dynamics

14:00 – 14:30 Bartosz Brzoza (CASUS/HZDR, DE)

Applying SE(3)-Equivariant Attentional Graph Neural Networks for the
purpose of predicting the electronic structure of molecular hydrogen

14:30 – 15:00 Discussion

15:00 – ca. 18:00 Outing
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Friday July 12th

09:00 – 11:30 Session Databases & Reaction Networks
Chair: Dr. Christoph Scheurer
09:00 – 09:45 Prof. Dr. Johannes Margraf (Universität Bayreuth, DE)

Machine Learning in Chemical Reaction Space

09:45 – 10:15 Dr. Jonathan Schmidt (ETH Zürich, CH)

Alexandria database: All you need is more data in material science?

10:15 – 10:30 Break
10:30 – 11:00 Prof. Dr. Olexandr Isayev (Carnegie Mellon University, USA)

Scaling Molecular Modeling to Millions of Reactions 
with Neural Network Potentials

11:00 – 11:30 Dr. Pierre-Paul De Breuck (UC Louvain, BE)

Property predictions from limited and multi-fidelity datasets

11:30 – 12:15 Discussion

12:15 – 12:30 Closing
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List of Posters
Within a topic, the abstracts are sorted alphabetically based on the first author’s family
name.

Thermodynamic Observables
1. Chen, Lin Synthesis of triangulene made simple by single-atom 

alloys
2. Demiroglu, Ilker Gaussian approximation potential development for 

bimetallic Pt-Cu nanoparticles

Electronic Structure and Long Range Interactions
3. Alibakhshi, A. tba
4. Aryal, N. Efficient ensemble averaging methods to study electronic

structure at finite temperature from first principles calcu-
lations using neural network

5.  withdrawn
6. Febrer Calabozo, P. Learning the density matrix, a symmetry rich encoding of 

the electronic density
7. Friede, M. dxtb - an efficient and fully differentiable framework for 

extended tight-binding
8. Froitzheim, T. GP3-xTB: a general purpose self-consistent tight-binding 

quantum chemical method
9. Lou, Z. Predicting the electronic densities and nuclear dynamics

of 2d materials
10. Vinod, V. Multifidelity machine learning for quantum chemical 

properties
11. Vondrák, M. Charge equilibration in machine learning potentials
12. Zhao, H. Deep learning functionals based on Møller-Plesset 

adiabatic connection for non-covalent interactions

Magnetic Observables
13. Hele, T. Machine learning spin-pure excited states of organic 

radicals
14. Polak, E. Applying a well-defined energy density for machine-

learned density functionals

Spectroscopic Observables
15. Chen, R. Uncovering the potential of applying principal component 

analysis (PCA) on Raman spectra of biochar
16. Daniel, D. T. Machine learning isotropic g values of organic battery 

materials
17. Das, B. Theoretical nonlinear vibrational spectroscopy of water in
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slit pores
18. Grunert, M. Predicting the spectra of semiconductors and insulators
19. Jähnigen, S. Vibrational circular dichroism
20. Jindal, A. Ion effects on terahertz spectra of microsolvated clusters
21. König, P. Complexions at the electrolyte/electrode interface in solid

oxide cells
22. Walker, M. Can machine learning accelerate the discovery of new

photovoltaics?
23. Willimetz, D. Modelling tensorial properties of zeolites using machine 

learning
24. Yaman, M. Decoding the fucose migration products in blood group 

epitopes

Databases & Reaction Networks
25. withdrawn
26. Ketkaew, R. Unsupervised Collective Variables for Exploring 

Expanded Configurational Space
27. Van Veerdeghem, J. Modeling the potential energy surfaces of the [H2O - Kr]+ 

system with gaussian process regression

Mechanical Observables
28. Clovin, N. Designing the phase stability in metal-organic frame

works and metal halide perovskites: Two sides of the
same strain coin?
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Abstracts

Abstracts for Talks

Monday July 8th

Out of the crystalline comfort zone: tackling working interfaces with machine learn-
ing
Karsten Reuter
Fritz-Haber-Institut der MPG, Germany

Machine learning (ML) promises a significant enhancement of multi-scale modeling capabilities in the context
of energy conversion and storage (ECS). In particular, ML interatomic potentials (MLIPs) trained with first-
principles data already offer orders of magnitude speed-ups in the computation of predictive-quality energies
and forces in atomic-scale simulations. This new efficiency finally allows to heads-on tackle the highly dy-
namic evolution of working interfaces in ECS systems, where the targeted functionality like catalytic activity
or ion mobility both inherently drives and results from ongoing substantial structural, compositional and mor-
phological changes. Unable to fully capture such operando evolution, direct first-principles based multiscale
modeling focused hitherto on model (single-)crystalline surfaces or interfaces, where the system dynamics
was typically restricted to select reacting or diffusing species that were considered central for a targeted pri -
mary function. The MLIP-enabled enhanced sampling capabilities instead allow to assess the thermody-
namic stability of complex, possibly amorphous configurations and thereby establish reliable structural mod-
els for the working interfaces. Automated process exploration in turn provides more systematic access to the
elementary steps that drive the operando evolution, paving the way for microkinetic simulations that analyze
the entanglement of this evolution with the primary function. Obviously, these advances in modeling capabili -
ties now call for ever more ML methodology, to efficiently analyze (trajectory) data from simulation cells con -
taining  thousands  of  atoms,  to  compute  spectroscopic  fingerprints  or  to  extract  refined  descriptors  for
operando-evolution aware high-throughput virtual screening.

Machine learning opens a wonderland for looking through glasses
Michele Simoncelli
Theory of Condensed Matter Group of the Cavendish Laboratory, University of Cambridge (UK),
United Kingdom

The relationship between atomistic structure and macroscopic properties of solids has been intriguing scien-
tists since the development of quantum theory, and plays a critical role in many and diverse technologies.
This talk will discuss how advancements in machine learning atomic force fields, and the recently developed
unified theory of thermal transport in crystals and glasses [1,2], allow us to predict with quantum accuracy
the vibrational and thermal properties of glassy solids with arbitrary composition and structural disorder [3]. I
will outline some of our efforts on this topic: elucidating how controlling disorder in the atomistic bond topol-
ogy of network solids allows us to engineer their macroscopic thermomechanical properties [4], describing
defects and hot spots in perovskites solid solutions, and predicting the structure and heat conductivity of hy -
brid materials with crystal-like bond topology and glass-like bond geometry [5].

[1] M. Simoncelli, N. Marzari, F. Mauri, Nat. Phys., 15, 809-813 (2019)
[2] M. Simoncelli, N. Marzari, F. Mauri, Phys. Rev. X, 12, 041011 (2022)
[3] M. Simoncelli, F. Mauri, N. Marzari, npj. Comput. Mater., 9, 106 (2023)
[4] A. Harper, K. Iwanowski, W. Witt, M. Payne, M. Simoncelli, Phys. Rev. Materials, 8, 043601 (2024)
[5] M. Simoncelli, D. Fournier, M. Marangolo, E. Balan, K. Béneut, B. Baptiste, B. Doisneau, N. Marzari, and F. Mauri,
10.48550/arXiv.2405.13161 (2024).

 Page 17 of 45



Accelerating transport coefficients predictions via machine learning
Christian Carbogno
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Germany

Heat and charge transport are ubiquitous phenomena in material science that play a pivotal role in a myriad
of scientific and industrial applications. These macroscopic, thermodynamic transport phenomena are deter-
mined by subtle details in the microscopic nuclear dynamics and, on top of that, by the coupling of electronic
and nuclear degrees of freedom. Especially at high temperatures and/or for system determined by non-trivial
interactions, higher-order couplings –so called strongly anharmonic and vibronic effects– can become deci-
sive for accurately describing macroscopic transport [1].
In this talk, we utilize heat transport as an example and first discuss how well-balanced data-sets that cover
all relevant strongly anharmonic effects can be built from fully anharmonic ab initio molecular dynamics [2].
Second, we discuss how these improves and streamlines the training of a machine-learning interatomic po-
tential (MLIP). Such an MLIP can help reaching the time and length scales necessary to describe transport
phenomena; however, it requires specific adaptations for the evaluation of transport coefficients [3]. Third,
we analyze how symbolic regression in combination with sensitivity analysis can accelerate and guide in sil-
ico materials’ space exploration for optimal transport coefficients [4]. Eventually, we will discuss how the pro-
posed strategies can be generalized to cover even more complex transport phenomena, including charge
transport.

[1] M. Simoncelli, N. Marzari, F. Mauri, Phys. Rev. X, 12, 041011 (2022)
[2] F. Knoop, T. Purcell, M. Scheffler, C. Carbogno, Phys. Rev. Lett., 130, 236301 (2023)
[3] M. Langer, F. Knoop, C. Carbogno, M. Scheffler, M. Rupp, Phys. Rev. B, 108, L100302 (2023)
[4] T. Purcell, M. Scheffler, L. Ghiringhelli, C. Carbogno, npj. Comput. Mater., 9, 112 (2023)

Harnessing machine learning for advancing amorphous battery materials
Nong Artrith1, H. Guo2, C. Cao3, M. R. Carbone3, S. Yoo3, F. Wang4, D. Lu3, A. Urban2

1Debye Institute for Nanomaterials Science, Netherlands
2Department of Chemical Engineering, Columbia University, New York,, United States
3Brookhaven National Laboratory, Upton, New York, United States
4Applied Materials Division, Argonne National Laboratory, Lemont, United States

Many materials with applications in energy, e.g., batteries, are non-crystalline, exhibiting amorphous struc-
tures, chemical disorder, and complex compositions. This complexity makes direct modeling with first princi -
ples methods challenging. To address this challenge, we developed accelerated sampling strategies based
on machine  learning  interatomic  potentials,  genetic  algorithms,  and  molecular-dynamics  simulations  [1].
Here, I will discuss the methodology and its applications to amorphous battery materials. We constructed the
phase diagram of amorphous LiSi alloys, which are prospective anode materials for lithium-ion batteries [2].
Additionally, we mapped the composition and structure space of amorphous lithium thiophosphate (LPS)
solid electrolytes [3-5]. The thermodynamic stability and ionic conductivity of the non-crystalline phases were
correlated with local structural motifs, leading to the identification of structure-composition-conductivity rela-
tionships that can be used for materials optimization and design. X-ray absorption spectroscopy (XAS) char -
acterizes materials, revealing details of the absorber atom’s local chemistry. Our work created an S/P K-
edge XAS spectra  database for  LPS materials  using structures from [3].  This  study presents the initial
atomic-scale insights into the oxidative degradation of LPS electrolytes, guiding macroscopic reactions via
microstructural engineering and enhancing sulfide electrolyte design.

[1] N. Artrith, A. Urban, Computational Materials Science, 114, 135-150 (2016)
[2] N. Artrith, A. Urban, G. Ceder, The Journal of Chemical Physics, 148,  (2018)
[3] H. Guo, Q. Wang, A. Urban, N. Artrith, Chem. Mater., 34, 6702-6712 (2022)
[4] H. Guo, M. Carbone, C. Cao, J. Qu, Y. Du, S. Bak, C. Weiland, F. Wang, S. Yoo, N. Artrith, A. Urban, D. Lu, Sci.
Data., 10, 349 (2023)
[5] C. Cao, M. Carbone, C. Komurcuoglu, J. Shekhawat, K. Sun, H. Guo, S. Liu, K. Chen, S. Bak, Y. Du, C. Weiland, X.
Tong, D. Steingart, S. Yoo, N. Artrith, A. Urban, D. Lu, F. Wang, Cell Reports Physical Science, 5, 101909 (2024)
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Tuesday July 9th

A foundational atomistic model for materials
Gábor Csányi
University of Cambridge, UK

A new computational task has been defined and solved over the past 15 years for extended material sys-
tems: the analytic fitting of the Born-Oppenheimer potential energy surface as a function of nuclear coordi-
nates. The resulting potentials ("force fields") are reactive, many-body, with evaluation costs that are cur-
rently on the order of 0.1-10 ms/atom/cpu core (or about 1-10ms on a powerful GPU), and reach accuracies
of a few meV/atom when trained specifically for a given system using iterative or active learning methods.
The latest and most successful architectures leverage many-body symmetric descriptions of local geometry
and equivariant message passing networks. Perhaps the most surprising recent result is the stability of mod-
els trained on very diverse training sets across the whole periodic table. Our recently discovery is that the
MACE-MP-0 model that was trained on just ~150,000 real and hypothetical small inorganic crystals (90% of
training set < 70 atoms), is capable of stable molecular dynamics on any system tested so far - this includes
crystals, liquids, surfaces, clusters, molecules, and combinations of all of these. The astounding generalisa-
tion performance of such foundation models open the possibility to creating a universally applicable inter-
atomic potential with useful accuracy (especially when fine-tuned with a little bit of domain-specific data), and
democratise quantum-accurate large scale molecular simulations by lowering the barrier to entry into the
field. Furthermore, there is a wide ranging efforts to train models that can predict observables on top of the
MD trajectories, encompassing a wide range of spectroscopy (certainly in terms of wavelength!), from X-ray
to infrared absorption and NMR.

High-throughput approaches for materials understanding and design
Janine George
Federal Intitute for Materials Research and Testing in Germany, Germany

Bonds and local atomic environments are crucial descriptors of material properties. They have been used to
create design rules and heuristics and as features in machine learning of materials properties.[1] Implemen-
tations and algorithms (e.g., ChemEnv and LobsterEnv) for identifying local atomic environments based on
geometrical characteristics and quantum-chemical bonding analysis are nowadays available.[2,3] Fully auto-
matic workflows and analysis tools have been developed to use quantum-chemical bonding analysis on a
large scale.[3,4] The lecture will demonstrate how our tools, that assess local atomic environments and per-
form automatic bonding analysis, help to develop new machine learning models and a new intuitive under-
standing of materials.[5,6] Furthermore, the general trend toward automation in computational materials sci-
ence and some of our recent contributions will be discussed.[7–10]

[1] J. George, G. Hautier, Trends in Chemistry, 3, 86-95 (2021)
[2] D. Waroquiers, J. George, M. Horton, S. Schenk, K. Persson, G. Rignanese, X. Gonze, G. Hautier, Acta. Crystallogr.
Sect. B., 76, 683-695 (2020)
[3]  J.  George, G. Petretto,  A.  Naik,  M. Esters,  A.  Jackson, R. Nelson, R. Dronskowski,  G. Rignanese,  G. Hautier,
ChemPlusChem, 87,  (2022)
[4] A. Naik, K. Ueltzen, C. Ertural, A. Jackson, J. George, JOSS., 9, 6286 (2024)
[5] A. Naik, C. Ertural, N. Dhamrait, P. Benner, J. George, Sci. Data., 10, 610 (2023)
[6] K. Ueltzen, A. Naik, C. Ertural, P. Benner, J. George, in preparation (2024)
[7] J. George, Trends in Chemistry, 3, 697-699 (2021)
[8] A. Ganose, et al., “atomate2,” (2023)
[9] A. Rosen, M. Gallant, J. George, J. Riebesell, H. Sahasrabuddhe, J. Shen, M. Wen, M. Evans, G. Petretto, D. Waro-
quiers, G. Rignanese, K. Persson, A. Jain, A. Ganose, JOSS., 9, 5995 (2024)
[10] I. Batatia, et al., 10.48550/arXiv.2401.00096 (2023)

Challenging the dogma of rotational equivariance in atomistic machine learning
Sergey Pozdnyakov
École polytechnique fédérale de Lausanne, Switzerland

In the last decade, methods rigorously incorporating rotational symmetry into their functional form have domi-
nated the field of atomistic machine learning. Two main considerations have driven this design choice. First,
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it is widely believed that rotational symmetry, when intrinsically built into a machine learning architecture,
serves as a necessary inductive bias or physical preconditioning, thus being crucial for a model's perfor-
mance and generalizability. Second, rigorous rotational equivariance per se is believed to be essential for
atomistic simulations such as molecular dynamics to avoid subtle artifacts.
In this talk, I will challenge the first belief by presenting an unconstrained model, Point Edge Transformer
(PET), which is not rotationally equivariant but achieves state-of-the-art performance on multiple benchmark
datasets of molecules and solids, covering both invariant targets such as potential energy and covariant
ones such as vectorial dipole moments. To address the second concern, we introduce a general symmetriza-
tion method that enforces rigorous rotational equivariance a posteriori for any backbone architecture.
However, our exact symmetrization scheme incurs additional computational costs and might be superfluous,
as PET inherently learns approximate rotational equivariance with typical discrepancies as small as of order
1e-4 eV/atom. In the final part of my talk, I aim to foster an interactive discussion on whether such rotational
discrepancies can drive malignant collective behavior in practical simulations and what tests are needed to
evaluate this.

Leveraging computational advances to design and optimize energy materials: from 
traditional methods to machine learning
Kulbir Ghuman
Institut National de la Recherché, Canada

The functionality of the materials used for energy applications is critically determined by the physical proper -
ties of small active regions such as dopants, dislocations, interfaces, grain boundaries, etc. The capability to
manipulate and utilize the inevitable disorder in materials,  whether  due to the finite-dimensional defects
(such as vacancies, dopants, grain boundaries) or due to the complete atomic randomness (as in amorphous
materials), can bring innovation in designing energy materials. With the increase in computational material
science capabilities, it is now possible to understand the complexity present in materials due to various de-
fects resulting in pathways required for optimizing their efficiencies. In this talk, I will provide a critical over -
view of such computational advancements specifically for designing materials for sustainable ammonia syn-
thesis and CO2 capture technologies. I'll  provide a comprehensive review of our recent research efforts,
which involve employing traditional methods like density functional theory (DFT), alongside leveraging the
data they generate to implement machine learning techniques, thereby accelerating the materials discovery
for these vital applications.

Machine-learning for electronic structure
Michele Ceriotti
EPFL, Switzerland

Atomic-scale simulations of materials and condensed-matter systems have been transformed by the applica-
tion of machine learning potentials, that facilitate and greatly reduce the computational cost for predicting
their structure and (thermo)dynamics. In order to also determine functional properties, and more in general to
extend further the scope of these simulations, it is desirable to develop machine-learning models that target
quantities that are more intimately connected with the electronic structure -- the charge density, the electron
density of states, the electronic excitations.
I will present a few examples of this kind of models, and discuss in particular how to construct "hybrid" frame-
works that combine data-driven elements with physically-motivated components. For example, I will demon-
strate the use of a model of the ground-state electronic density of states to perform simulations at finite elec -
tron temperature, and the use of a minimal-basis Hamiltonian as an intermediate step in a model architecture
targeting excited-state properties.

Advanced software frameworks for describing local and non-local interactions in 
high-dimensional neural network potentials
Alexander Knoll, Jörg Behler
Ruhr Universität Bochum, Germany

Machine learning potentials (MLPs) have emerged as powerful tools for the accurate description of realistic
systems containing large numbers of atoms. A well established example for MLPs are high-dimensional neu-
ral network potentials (HDNNPs), which leverage the fitting abilities of neural networks to express the poten-
tial  energy surface (PES) of  a system. Recently, advanced models like fourth-generation HDNNPs (4G-
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HDNNP)[1] have demonstrated the ability to capture interactions extending beyond the short-range environ-
ment of an atom, including dispersion, electrostatics and non-local charge transfer. This talk will emphasise
the importance of these interactions, highlighting the advancements achieved across all four generations of
HDNNPs.[2] The increasing sophistication of these advanced MLPs brings about a corresponding rise in
complexity when managing training data, controlling workflows and assessing results. This, in turn, necessi -
tates robust tools which automate the training and validation process and ensure the reproducibility of the fi-
nal results. Addressing this need, we present modern software frameworks, RuNNer 2.0 and runnerase, as
solutions to these growing challenges. RuNNer 2.0 is an open-source, stand-alone software package for the
construction and evaluation of second-, third-, and fourth-generation HDNNPs. It unifies the entire workflow
in a fully MPI-parallel program: from the evaluation of atomistic descriptors, through the training of diverse
properties like atomic spins, charges, energies and forces, to their final application in molecular dynamics
simulations. We demonstrate how RuNNer 2.0’s incorporation of modern fitting strategies can significantly
improve training quality and performance. RuNNer 2.0 is conveniently accessible via Python through the
ASE[3]-based framework runnerase. This tool automates the construction of descriptors and hyperparameter
searches, streamlines simulation control, and provides active learning workflows. Moreover, runnerase ex-
tends the use of RuNNer to all applications covered by the ASE ecosystem, such as its integration into the
materials science IDE pyiron.[4] Together, these tools enable the efficient construction of HDNNPs that con-
sider both local and non-local atomic interactions in complex systems.

[1] T. Ko, J. Finkler, S. Goedecker, J. Behler, Nat. Commun., 12, 398 (2021)
[2] J. Behler, Chem. Rev., 121, 10037-10072 (2021)
[3] A. Hjorth Larsen, J. Jørgen Mortensen, J. Blomqvist, I. Castelli, R. Christensen, M. Dułak, J. Friis, M. Groves, B.
Hammer, C. Hargus, E. Hermes, P. Jennings, P. Bjerre Jensen, J. Kermode, J. Kitchin, E. Leonhard Kolsbjerg, J. Kubal,
K. Kaasbjerg, S. Lysgaard, J. Bergmann Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J.
Schiøtz, O. Schütt, M. Strange, K. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, K. Jacobsen, J. Phys.: Con-
dens. Matter, 29, 273002 (2017)
[4] J. Janssen, S. Surendralal, Y. Lysogorskiy, M. Todorova, T. Hickel, R. Drautz, J. Neugebauer, Computational Materi -
als Science, 163, 24-36 (2019)

Electronic structure surrogate learning for quantum dynamics and inverse design
Reinhard Maurer
University of Warwick, United Kingdom

Atomistic simulation based on quantum mechanics (QM) is currently being revolutionized by machine-learn-
ing (ML) methods. Many existing approaches use ML to predict molecular properties from quantum chemical
calculations. This has enabled molecular property prediction within vast chemical compound spaces and
high-dimensional parametrization of energy landscapes for the efficient simulation of measurable observ-
ables. However, as all properties derive from the QM wave function, an ML model that can predict the wave
function also has the potential to predict other properties. In this talk, I will explore ML approaches that de-
liver surrogate models of the electronic structure based on the QM Hamiltonian with the aim to develop meth-
ods that use ML and QM in synergy. Using example systems from heterogeneous catalysis and organic elec-
tronics, I will discuss the challenges associated with encoding physical symmetries and invariance properties
into machine learning models of electronic structure. Upon overcoming these challenges, integrated ML-QM
methods  within  modern,  modular  software  frameworks  offer  the  combined  benefits  of  data-driven
parametrization and first-principles-based methods. I will discuss several opportunities associated with build-
ing ML-augmented quantum chemical methods, including Inverse Chemical Design based on ML-predicted
wave functions and the development of efficient and accurate surrogate models to study materials chemistry.

ML Electrostatics Models in Relevant Test Systems
William Baldwin
University of Cambridge, United Kingdom

Incorporating electrostatics into machine learning will be essential for modelling electronically active systems
such as electrode-electrolyte interfaces or electrocatalysis. Several models have therefore been proposed
which include some description of electrostatic effects, or which can predict observables related to charge
density. Despite this interest, there is a lack of test cases on which to benchmark electrostatic models. In this
case, a 'good' benchmark is one which (i) cannot be properly be tackled with purely short range models, (ii)
is relevant to real modelling questions and (iii) separates the performance of different approaches. In this
work, we introduce new test systems which fulfill the above requirements. In particular, we look at systems
relevant to electrode/electrolyte interfaces. By implementing several previously proposed ideas within in the
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the MACE MLIP framework, we analyse how well different approaches can capture the necessary physics.
Finally, we present new a architecture which performs well on these examples, suggesting that modelling
electronically active systems is within reach.
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The Jacobi-Legendre framework for materials discovery
Stefano Sanvito
Trinity College Dublin, Ireland

Computational methods based on density functional theory (DFT) have served as the workhorse of most
electronic structure calculations for decades. The success of DFT is generally rooted in its strong theoretical
foundation, in the availability of accurate approximations and on the multitude of numerical implementations
constructed over the years. Yet, DFT becomes increasingly computational expensive when extremely accu-
rate energies are required, when one has to deal with large systems or when it is combined with an open-
boundary-condition problem (e.g. in quantum transport). Here, I will demonstrate that the integration of ma-
chine-learning techniques in DFT can solve some of the issues and effectively extends the DFT range of ap -
plications. 
I will introduce a compact cluster expansion framework, rooted in Jacobi and Legendre polynomials, to con -
struct highly accurate, efficient and interpretable machine-learning surrogate models [1]. This can be then
deployed to the construction of ML-based interatomic potentials (IAPs) as well as for the prediction of the
ground-state electronic density, the key variable in all DFT calculations [2]. With this toolkit at hand, I will
demonstrate as one can accelerate materials discovery, for example the construction of phase diagrams [3].
Furthermore, the same models can be employed within quantum transport to enormously increase the calcu-
lation throughput.

[1] M. Domina, U. Patil, M. Cobelli, S. Sanvito, Phys. Rev. B, 108, 094102 (2023)
[2] B. Focassio, M. Domina, U. Patil, A. Fazzio, S. Sanvito, npj. Comput. Mater., 9, 87 (2023)
[3] H. Rossignol, M. Minotakis, M. Cobelli, S. Sanvito, J. Chem. Inf. Model., 64, 1828-1840 (2024)

Prediction of the magnetic exchange interaction in doped topological insulators
Johannes Wasmer1, Rubel Mozumder1, David Antognini Silva1, Stefan Blügel1, Philipp Rüßmann2

1Forschungszentrum Jülich, Germany
2Institute of Theoretical Physics and Astrophysics, University of Würzburg, Germany

We present a benchmark study of surrogate models for impurities embedded into crystalline solids. Using the
Korringa-Kohn-Rostoker Green Function method and the AiiDA workflow engine [1], we have built a data-
base of magnetic transition metal impurity dimers embedded in the topological insulator Bi 2Te3. We predict
isotropic exchange interaction of the impurity dimer in the classical Heisenberg model with machine learning
and then use these surrogates as input for spin dynamics calculations to find the magnetic ground state of
the material [2]. The study compares various recent E(3)-equivariant models such as ACE and MACE [3] in
terms of performance and reproducible end-to-end workflows.

[1] P. Rüßmann, F. Bertoldo, S. Blügel, npj. Comput. Mater., 7, 13 (2021)
[2] P. Rüßmann, J. Ribas Sobreviela, M. Sallermann, M. Hoffmann, F. Rhiem, S. Blügel, Front. Mater., 9,  (2022)
[3] Batatia, I., Kovács, D. P., Simm, G. N. C., Ortner, C. & Csányi, G. MACE: Higher Order Equivariant Message Passing
Neural Networks for Fast and Accurate Force Fields. Preprint (2022).

Machine learning for molecular magnetism
Alessandro Lunghi
Trinity College Dublin, Ireland

Magnetic molecules have been proposed as key elements of novel technologies, ranging from spintronics,
quantum sensing and high-density information storage, but their integration with complex environments at
room temperature stands out as a main road block. Among the many challenges in this area, one of the most
crucial ones is the stabilization of the coherence of magnetic molecules’ spin at high temperature. Ab initio
simulations of this processes have recently become available [1], but at very high computational costs, mak-
ing it very hard to thoroughly explore the phenomenology of spin relaxation. In addition to current uncertain-
ties on the nature of spin-lattice interactions, the goal of actually translating new design principles into chemi -
cal strategies poses some serious challenges to the field.
In this talk I will discuss how machine learning can be leveraged to speed up the evaluation of those molecu-
lar properties required to estimate spin relaxation, thus making it possible increase the throughput of these
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simulations [2]. In particular, I will show how molecular normal modes can be efficiently computed through
linear machine learning methods combined with active learning [3] and how magnetic properties can be pre -
dicted through equivariant models [4].

[1] A. Lunghi, Sci. Adv., 8,  (2022)
[2] A. Lunghi, S. Sanvito, Nat. Rev. Chem., 6, 761-781 (2022)
[3] V. Briganti, A. Lunghi, Mach. Learn.: Sci. Technol., 4, 035005 (2023)
[4] V. Nguyen, A. Lunghi, Phys. Rev. B, 105, 165131 (2022)

Machine learning facilitated by microscopic features for discovery of novel mag-
netic double perovskites
Shuping Guo, Ryan Morrow, Jeroen van den Brink, Oleg Janson
IFW Dresden, Germany

Double perovskites are a growing class of compounds with prospects for realization of novel magnetic be-
haviors. The rich chemistry of double perovskites calls for high-throughput computational screening that can
be followed by or combined with machine-learning techniques. Yet, most approaches neglect the bulk of mi -
croscopic  information  implicitly  provided  by  first-principles  calculations,  severely  reducing  the  predictive
power. In this work, we remedy this drawback by including onsite energies and transfer integrals between the
d states of  magnetic  atoms.  These quantities were computed by Wannierization of  the relevant  energy
bands. By combining them with the experimental information on the magnetism of studied materials and ap-
plying machine learning, we constructed a model capable of predicting the magnetic properties of the re-
maining materials whose magnetism has not been addressed experimentally. Our approach combines clas-
sification learning to distinguish between double perovskites with dominant ferromagnetic or antiferromag-
netic interactions and regression employed to estimate magnetic transition temperatures. In this way, we
identified one antiferromagnet and three ferromagnets with a high transition temperature. Another 28 antifer-
romagnetic  candidates  were  identified  as  magnetically  frustrated  compounds.  Among  them,  cubic
Ba2LaReO6 shows the highest frustration parameter, which is further validated by a direct first-principles cal-
culation. Our methodology holds promise for eliminating the need for resource-demanding calculations.

Machine learning for spectroscopy – concepts, successes, and challenges
Patrick Rinke
Aalto University, Finland

Spectroscopy is a fundamental tool in molecular and materials research, characterization, and discovery. It
has therefore become a major objective of machine-learning (ML) development but has not received as
much attention in the latest artificial intelligence (AI) boom as other experimental or computational tech -
niques. Machine learning for spectroscopy pursues two parallel goals (figure 1) [1]: spectra prediction (typical
in computational studies) and property inference (typical in experimental approaches). Successful ML spec-
tra predictions allow us to cut down on the time and resources behind computational or experimental spec-
troscopy. Trained on available input (e.g., atomic structure or materials attributes) and output (e.g., spectra
or spectroscopic quantities) pairs, the ML model can make output predictions for new input instantaneously,
without further resource requirements. In property inference tasks, data input and output are reversed to
echo spectroscopic applications. ML models predict materials structure and properties from spectral input or
classify the inputs into different categories.
In this presentation, I will use the spectroscopy paradigm to present different ways to implement ML for spec -
tral prediction and inference tasks, show successful examples and address remaining challenges. For com-
putational data [2], I will demonstrate that ML models can predict ionization energies and spectra of organic
molecules from their atomic structure alone [3,4]. We trained kernel ridge regression and neural network
models on quantum mechanically computed molecule-property pairs. The molecules are represented by sim-
ple, easily attainable numerical descriptors based on nuclear charges and cartesian coordinates. The com-
plexity of the molecular descriptor and the diversity of the data sets turn out to be crucial for the learning suc -
cess [3]. Our best AI models predict ionization energies within 0.2 eV and excitation spectra with 97% accu-
racy surpassing typical measurement uncertainties.
For inference, I will illustrate how we correlate the properties of biopolymers with nuclear magnetic reso-
nance (NMR) spectroscopy. We extracted lignin from birch wood and characterized it with 2D NRM spec-
troscopy [5]. Using the 2D NRM spectra as input, our AI model infers lignin properties like the antioxidant ac-
tivity directly from the spectra. We trace the predictions back to NRM peaks to link the antioxidant activity to
structural features of lignin encoded in the spectra.

 Page 24 of 45



[1] H. Kulik, T. Hammerschmidt, J. Schmidt, S. Botti, M. Marques, M. Boley, M. Scheffler, M. Todorović, P. Rinke, C.
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Experiment-driven atomistic materials modeling: combining XPS and MLPS to infer 
the structure of a-COx
Tigany Zarrouk
Aalto University, Finland

One of the most important, and most challenging, aspects of atomistic materials modeling is to reconcile ex-
perimental and computational results. This requires an effective strategy for identifying atomistic structures
whose predicted observables align with the experimentally available data. Conventional approaches involve
generating numerous configurations through molecular dynamics or Monte Carlo structure optimization and
selecting the one with the closest match to experiment. However, this is an inefficient process which is not
guaranteed to succeed. In this paper, we introduce a general method to combine atomistic machine learning
(ML) with experimental observables that produces atomistic structures compatible with the experimental ob-
servables by design. We use this approach in combination with grand-canonical Monte Carlo within a modi-
fied Hamiltonian formalism, to generate configurations that agree with both experimental data and are chemi-
cally sound (i.e., low in energy). We apply our approach to understand the atomistic structure of oxygenated
amorphous carbon (a-COx), an intriguing carbon-based material, to answer the question of how much oxy-
gen can be added to carbon before it fully decomposes into CO and CO2. Utilizing an ML-based X-ray pho -
toelectron spectroscopy (XPS) model trained from GW and density functional theory (DFT) data, in conjunc-
tion with an ML interatomic potential for the C-O system, we identify a-COx structures compliant with experi-
mental XPS predictions that are also energetically favorable with respect to DFT. Employing a network anal-
ysis, we obtain an accurate deconvolution of the XPS spectrum into motif contributions, both revealing the in -
accuracies inherent to experimental XPS interpretation and granting us atomistic insight into the structure of
a-COx. This method generalizes to multiple sets of experimental data and allows for the elucidation of the
atomistic structure of materials directly from experimental results, thereby enabling experiment-driven materi-
als modeling with a degree of realism previously out of reach

Categorizing three-dimensional photonic crystals: open challenges in scale-covari-
ant problems
Rose Cersonsky
University of Wisconsin, United States

Many butterflies, birds, beetles, and chameleons owe their spectacular colors to the microscopic pattern of
dielectric materials within their wings, feathers, or skin. When these patterns, or photonic crystals, result in
the omnidirectional reflection of commensurate wavelengths of light, it is due to a complete photonic band
gap (PBG). So, what such patterns will lead to a photonic band gap? While this appears to be a straight-
forward question, it is, in truth, difficult to answer. Ordered photonic band gap crystals were first theorized in
the early 1990s, and the efficient computation of photonic band structures for three-dimensional patterns oc-
curred much later. Thus, early studies aimed to define design principles through analyses of phenomena in
two-dimensional systems or from limited three-dimensional calculations. While these general principles of
design hold for many cases, the space of potential photonics targets is far wider than they suggest, and thus,
we look to machine learning to derive new insight into this structure-property landscape. This talk will focus
on the challenges of deriving surrogate models for photonic structures, largely due to the scale-covariance of
their governing equations.
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p-DOS: a descriptor with electronic wisdom for learning X-Ray spectroscopy
Clelia Middleton
Newcastle University, United Kingdom

Subsequent to developing a successful  methodology for the prediction of  X-Ray spectra using machine
learning, we introduce p-DOS, a novel descriptor to represent the electronic properties of species. Within ap-
plied machine learning, several approaches to the prediction of spectral characteristics have been devel-
oped. Penfold et al.  introduced the machine learning architecture XANESNET, where success has been
demonstrated when predicting the K- and L-edges of various transition metals from a purely geometric repre -
sentation. [1]
When moving to domains where the transitions have significant electronic character, such as with XES, or
where the absorption edges of light non-metals are investigated, a representation which correspondingly en-
codes electronic character is required. To produce accurate electronic representations while maintaining the
speed and efficiency with which machine learning is able to produce results, we produce a descriptor based
on a partial Density-of-States representation [2] from a guess wavefunction, and apply this descriptor using
the previously developed XANESNET architecture. This p-DOS representation is able to accurately predict
the K-edge of sulphur complexes, as demonstrated with tests executed on a dataset extracted from the
GDB-13 database.
We further demonstrate the utility of our novel representational method by applying it to an interesting test
case; the photostimulated ring-opening of the simple ring system thiophenone. The final population distribu-
tion of the photoproducts of this system is presently an open question. [3] Machine learning predictions using
the p-DOS descriptor recommend that near-edge X-Ray absorption spectroscopy would reveal an informa-
tive peak, enabling the populations of previously indifferentiable species to be quantified. Our algorithm acts
here as a “pocket oracle”, enhancing the arsenal of experimentalists and aiding their capacity to make in-
formed decisions about the potential value of dedicating valuable beamtime to a particular line of investiga-
tion at minimal computational cost when compared to first-principles calculations.
Provisional results applying p-DOS to other light non-metals and investigations of the utility of applying this
generalist (type II) model in the time-resolved domain will also be shown.

[1] C. Rankine, T. Penfold, The Journal of Chemical Physics, 156, (2022) 
[2] C. Middleton, B. Curchod, T. Penfold, Partial Density of States Representation for Accurate Deep Neural Network
Predictions of X-ray Spectra, 2024 
[3] D. Murdock, S. Harris, J. Luke, M. Grubb, A. Orr-Ewing, M. Ashfold, Phys. Chem. Chem. Phys.,  16, 21271-21279
(2014) 
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Interpreting core-loss spectroscopy
Rebecca Nicholls
University of Oxford, UK

Core-loss spectroscopy, produced by electron or X-ray beams, has the potential to tell us about the bonding
and structure of a material. Experimental spectra can be difficult to interpret and simulation potentially allows
us to make a link between spectral features and bonding environment. Just using simulation to replicate ex-
perimental data does not always help us and I will discuss the importance and challenge of keeping the sci -
entific question at the centre of the work when combining simulation and experiment. 

Predicting electron paramagnetic resonance parameters and their sensitivity to 
structural configuration
Josef Granwehr
Forschungszentrum Jülich GmbH and RWTH Aachen University, Germany

Organic radical batteries (ORBs) represent a more sustainable and resource-friendly alternative to conven-
tional Li–ion batteries, since their cathodes consist of an organic radical polymer rather than transition metal
oxides. As ions are transported through the polymer during charge/discharge cycling of a battery, radical
polymers experience recurring operational stress that requires tedious material optimisation with long turn-
around times. Support from computational methods would be highly desirable, yet computationally capturing
redox processes,  which are intrinsic for the operation of  batteries,  requires non-standard methods,  cus-
tomised for this particular use case. Moreover, for testing the suitability and accuracy of a computational ap-
proach, benchmarking using experimental data is necessary.
Electron paramagnetic resonance (EPR) is a spectroscopic technique to investigate the interaction of elec-
tron spin from unpaired electrons, such as radicals or transition metal ions, with magnetic fields. The ob-
tained coupling parameters provide structural and electronic information regarding the paramagnetic centre.
Spectro-electrochemical in operando EPR showed a good contrast of the radical g value as a function of the
state-of-charge (SoC) of an ORB. However, in EPR simple relations between spectroscopically determined
coupling parameter variations and sample properties are generally less straightforward than for the more
widespread nuclear magnetic resonance spcetroscopy. Therefore, a common task for computational chem-
istry is the model confirmation by ab initio calculation of coupling parameters and comparison with experi-
ment. While density functional theory (DFT) methods have been developed to accurately predict electron g
values or hyperfine coupling constants for crystalline solids or in solution, non-crystalline solids such as poly-
mers without recurring conformational motifs are more challenging to compute. Large systems would be re-
quired that are beyond the capability of common DFT codes, and EPR observables are not directly accessi -
ble from MD simulations. Nevertheless, for organic radical polymers, the combination of MD simulations with
DFT computations showed good predictions of g values as a function of the radical density, which itself de-
pends on the battery SoC.[1]
g is generally a tensorial quantity. However, ORBs require a high local electron spin concentration to achieve
competitive capacity, where Heisenberg spin exchange between spatially close radical centres causes an
averaging of anisotropic interactions and results in an isotropic g value. Experimentally it was found that g is
concentration dependent, hence not only the global radical concentration can be determined via the EPR sig-
nal intensity, but also heterogeneities of local concentrations during cycling of an ORB can be monitored. In
addition, the obtained contrast in  g may be employed for benchmarking of numerical simulations. An MD
model can be assessed whether it relaxes towards a structure that provides the correct experimental g value,
using MD snapshots as input structure for DFT calculations.[1]
A computationally more efficient approach is provided by machine learning (ML) of isotropic g values. After
validating an MD simulation approach, its trajectory provided an abundance of structures as input for DFT
computations. These then served as data for training and testing of an ML model based on regression trees.
[2]  Different  radical  densities  or,  analogously,  different  SoC  were  obtained  by  varying  the  number  of
monomers that were radicals. The difference between DFT-derived and ML-predicted g values was found to
be on the same order of magnitude or below the uncertainty of experimentally derived  g values obtained
from in operando EPR measurements of a PTMA-based organic radical battery. The ML model was sensitive
to the radical density and learnt to predict g values also for radical densities that were not part of the training
data set. Furthermore, different molecular descriptors were compared, showing variations in performance.
Once a coupling parameter has been identified experimentally that shows good contrast upon sample varia-
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tion, a subsequent step may be the identification of fundamental relationships with atomic configuration. This
typically requires experimental empiricism or systematic theoretical studies. As an alternative, a statistical
approach is discussed to gauge the importance of structure parameters, such as bond lengths, bond angles
or dihedral angles, using hyperfine coupling constants as an example.[3] In EPR, hyperfine coupling con-
stants describe measurable electron–nuclear interactions. For some organic radicals, importance quantifiers
were computed with the neighborhood components analysis ML algorithm, also using molecular dynamics
trajectory snapshots. Atomic–electronic structure relationships are visualized in matrices correlating structure
parameters with coupling constants of all magnetic nuclei in a molecule. It is shown that qualitatively, the re -
sults adequately reproduce common hyperfine coupling models.

[1] D. Daniel, S. Oevermann, S. Mitra, K. Rudolf, A. Heuer, R. Eichel, M. Winter, D. Diddens, G. Brunklaus, J. Granwehr,
Sci. Rep., 13, 10934 (2023)
[2] D. Daniel, S. Mitra, R. Eichel, D. Diddens, J. Granwehr, J. Chem. Theory Comput., 20, 2592-2604 (2024)
[3] C. Szczuka, R. Eichel, J. Granwehr, RSC Adv., 13, 14565-14574 (2023)

Assessing spectroscopic features: from fingerprinting to predictions
Claudia Draxl
Humboldt-Universität zu Berlin, Germany

Comparing spectra can be viewed either as a standard, everyday procedure in laboratories or as a challeng-
ing task with the potential for scientific discovery. Differences in spectra can arise from many sources, such
as experimental conditions (temperature, pressure, UHV, etc.), defects or structural parameters, or even a
chemical reaction. Likewise, uncertainties in computed spectra can come from the underlying methodology
or approximations, computational parameters, or structural input. Interpreting such results requires tools be-
yond pure chemical intuition. A first step in this direction is to define what we mean by similarity of spectra
and metrics that allow to “measure” it. By developing a spectral fingerprint [1], we could demonstrate the im -
pact of various parameters on spectral features of computed and measured data [1,2]. At the same time, our
approach allowed us to assess data quality on a quantitative level. Combined with (un)supervised learning,
spectral fingerprints can also be used to explore large data spaces for patterns or trends, leading to rather
unexpected findings [3].

[1] M. Kuban, S. Rigamonti, C. Draxl, 10.48550/arXiv.2403.10470 (2024)
[2] M. Kuban, S. Rigamonti, M. Scheidgen, C. Draxl, Sci. Data., 9, 646 (2022)
[3] M. Kuban, Š. Gabaj, W. Aggoune, C. Vona, S. Rigamonti, C. Draxl, MRS Bulletin, 47, 991-999 (2022)

Scientific machine learning and explainable AI approaches for the physical sci-
ences
Stefan Sandfeld
Forschungszentrum Jülich, Germany

Scientific applications of machine learning and artificial intelligence often pose entirely different challenges
than applications typically considered in computer science. Data for scientific problems can extremely be
noisy or sparse due to a high (computational) cost of simulations or experiments. In other situations, it might
be easy to obtain large amounts of data but creating accurate models that generalize well and that addition-
ally are computationally even more efficient than classical methods is still very challenging.
In this presentation we discuss this challenge from the perspective of physical sciences and introduce solu-
tions for chosen problems. An additional focus is on the development of domain-agnostic ML methods to
avoid the construction of highly specialized solutions: (i) a way to circumvent the necessity to hand-label mi -
croscopy images, (ii) an explainable AI approach for creating high-accuracy number encodings for genera-
tive models, and (iii) an outlook to the next generation of scientific AI models, i.e., foundation models -- and
how they even might be able to mitigate the problem of sparse data.

Machine learned small polaron dynamics
Luca Leoni1, Cesare Franchini1, Viktor C. Birschitzky2, Michele Reticcioli2
1University of Bologna, Italy
2University of Vienna, Austria

Polarons are charged quasiparticles that form in polarizable materials. These particles play a significant role
in important phenomena such as charge transfer, electron-hole recombination, and catalytic processes [1].
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Different methods have been used to study the equilibrium properties of these states [2]. However, their dy-
namics can only be studied through standard ab initio molecular dynamics (AIMD) [3], which limits both the
time scales and system sizes of the simulation. In recent years, machine learning potentials (MLPs) have
helped bridge the gap between time- and length-scales in AIMD. In this study, we develop a MLPs architec -
ture using an equivariant graph neural network that successfully accounts for small polaron hopping dynam-
ics at the nanosecond timescale. We apply the proposed ML framework to study hole and electron polaron
dynamics in MgO and (F-doped) TiO2, which enables us to estimate the polaron mobility at different tempera-
tures and study the influence of dopants on the formation and dynamics of polarons.

[1] M. Reticcioli, I. Sokolović, M. Schmid, U. Diebold, M. Setvin, C. Franchini, Phys. Rev. Lett., 122, 016805 (2019)
[2] C. Franchini, M. Reticcioli, M. Setvin, U. Diebold, Nat. Rev. Mater., 6, 560-586 (2021)
[3] P. Kowalski, M. Camellone, N. Nair, B. Meyer, D. Marx, Phys. Rev. Lett., 105, 146405 (2010)

Applying SE(3)-Equivariant Attentional Graph Neural Networks for the purpose of 
predicting the electronic structure of molecular hydrogen
Bartosz Brzoza
CASUS/HZDR, Germany

In this work, we demonstrate the efficacy of a neural network model implemented as the Materials Learning
Algorithms (MALA) package in predicting the electronic structure of a system of hydrogen molecules under
various pressure and temperature conditions across the molecular liquid-solid phase boundary, demonstrat-
ing the potential of our methods for molecular systems. Additionally, we investigate the use of SE(3)-Trans-
former Graph Neural Networks to improve the generalizability and extrapolation capabilities of our models.
Our results indicate that the MALA framework provides a powerful and efficient tool for accelerating Kohn-
Sham density functional theory calculations in molecular systems. This work paves the way for future re-
search in developing advanced machine-learning algorithms for accelerating electronic structure calculations
both accurately and efficiently.
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Friday July 12th

Machine Learning in Chemical Reaction Space
Johannes T. Margraf
University of Bayreuth, Germany

In this talk, we discuss the challenges associated with developing ML models for chemical reaction space.[1]
The special properties of chemical reaction networks have significant implications for data collection and
model training. This even applies to the relatively simple task of predicting reaction energies. Here, the influ-
ence of important ‘hub’ molecules can strongly drive prediction errors.[2] Furthermore, the conformational
space of the reactants needs to be adequately explored using global optimization techniques. Kinetic proper-
ties (e.g. rate constants) are even more challenging to predict, as they are not simple molecular properties.
[3] Here, active learning strategies must incorporate rare-event sampling, and convergence of the target ob-
servable must be checked carefully.[4] To accelerate this process, foundation models for chemical applica-
tions (trained on large reference databases) have recently been shown to be remarkably transferable across
different domains.[5] This opens the door towards finetuning based strategies for data-efficient chemical ma-
chine learning.

[1] J. Margraf, H. Jung, C. Scheurer, K. Reuter, Nat. Catal., 6, 112-121 (2023)
[2] S. Stocker, G. Csányi, K. Reuter, J. Margraf, Nat. Commun., 11, 5505 (2020)
[3] H. Jung, L. Sauerland, S. Stocker, K. Reuter, J. Margraf, npj. Comput. Mater., 9, 114 (2023)
[4] S. Stocker, H. Jung, G. Csányi, C. Goldsmith, K. Reuter, J. Margraf, J. Chem. Theory Comput., 19, 6796-6804 (2023)
[5] I. Batatia et al., 10.48550/arXiv.2401.00096 (2024)

Alexandria database: all you need is more data in material science?
Jonathan Schmidt1, Noah Hoffman2, Hai-Chen Wang3, Aldo Romero4, Ludger Witz5, Pedro Bor-
lido6, Pedro JMA Carriço6, Tiago FT Cerqueira6, Silvana Botti3, Miguel Marques3

1ETH Zurich, Switzerland
2Department of Physics, Humboldt University Berlin, Berlin, Germany
3Interdisciplinary  Centre for  Advanced Materials  Simulation,  Ruhr  University  Bochum, Bochum,
Germany
4Department of Physics and Astronomy West Virginia University, United States
5Department of Physics, University of Luxembourg, Luxembourg
6Department of Physics, University of Coimbra, Coimbra, Portugal

We develop and apply crystal graph attention networks along with other universal machine learning models
to scan billions of materials for thermodynamic stability. By validating these predictions with density func-
tional theory (DFT), we have curated a new database comprising 4.5 million materials, including a convex
hull of over 115,000 materials. We observe that each iteration of the database and its associated ML models
enhances the efficiency of our high-throughput searches. To improve the accuracy of DFT calculations for
thermodynamic stability, we have added SCAN and PBEsol databases to the Alexandria database, which fo-
cus on stable and metastable materials. Additionally, we examine the dependency of prediction errors when
applying transfer learning from PBE to these datasets. Transfer learning has also enabled us to expand our
high-throughput searches to include two-dimensional and one-dimensional materials, significantly broaden-
ing the scope of the database.
The database now serves as a benchmark for evaluating the performance of existing universal force fields
and other universal machine learning models, and facilitates the development of new models.

[1] J. Schmidt, N. Hoffmann, H. Wang, P. Borlido, P. Carriço, T. Cerqueira, S. Botti, M. Marques, Advanced Materials,
35,  (2023)
[2] H. Wang, J. Schmidt, M. Marques, L. Wirtz, A. Romero, 2D Mater., 10, 035007 (2023)
[3] N. Hoffmann, J. Schmidt, S. Botti, M. Marques, Digital Discovery, 2, 1368-1379 (2023)
[4] J. Schmidt, L. Pettersson, C. Verdozzi, S. Botti, M. Marques, Sci. Adv., 7,  (2021)
[5] https://alexandria.icams.rub.de/
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Scaling molecular modeling to millions of reactions with neural network potentials
Olexandr Isayev, Dylan M. Anstine, Roman Zubatiuk
Carnegie Mellon University, United States

Developments in high-throughput experimentation, automated chemistry platforms, and chemical generative
models have created an urgent need to rapidly predict reaction outcomes so that synthetic planning and
evaluations of degradability can match the emerging pace of molecule/material discovery. Machine-learned
interatomic potentials (MLIPs), whereby potential energy surface representations are learned from datasets
of first-principles calculations, present an attractive opportunity to overcome the expensive and/or time-con-
suming tasks required to characterize and refine reactions experimentally or with quantum chemistry models.
In this talk, I will introduce two models, RxnAIMNet and AIMNet2-Pd, that illustrate how MLIPs can be used
to predict the thermodynamics and kinetics of general organic reactions and carbon-carbon cross-couplings
that are catalyzed by Pd organometallic complexes. By learning from a newly constructed and exhaustive
dataset of ~10 million molecular conformers, RxnAIMNet is shown to reliably perform minimum energy path-
way searches, transition state optimization, and intrinsic reaction coordinate calculations, leading to pre-
dicted activation barriers within ~2 kcal/mol of reference range-separated hybrid density functional theory
(DFT) calculations. To meet the needs of high-throughput reaction characterization, we introduce a method
for batched nudged elastic band calculations, which allows RxnAIMNet to identify ~350,000 minimum energy
pathways daily on a single medium-end GPU.

Property predictions from limited and multi-fidelity datasets
Pierre-Paul De Breuck
Université catholique de Louvain, Belgium

The available materials data are often rather limited. Unfortunately, typical  machine-learning approaches
generally require large amounts of data to make accurate predictions. To tackle this limitation, I will introduce
MODNet, an all-round framework which relies on a feedforward neural network, the selection of physically
meaningful features, and when applicable, joint-learning. Next to being faster in terms of training time, this
approach is shown to outperform current graph-network models on small datasets.
Furthermore, materials data often present various levels of accuracy, with typically much less high- than low-
fidelity data. I will therefore present approaches to extract as much information as possible from all available
data.
Finally, I will discuss how active learning can be used to optimally perform data acquisition, with two practical
applications.
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Thermodynamic Observables

Synthesis of triangulene made simple by single-atom alloys
Lin Chen, Jonas Björk, Johanna Rosen
1Linköping University, Sweden

Triangulene, the smallest triplet-ground-state polybenzenoid, has previously been successfully synthesized
by tedious tip-manipulation experiments, employing scanning probe techniques to dehydrogenate precursor
molecules under ultra-high vacuum and low-temperature conditions. Here, we propose an alternative ap-
proach to form triangulene on single-atom alloys, predicted using density functional theory calculations com-
bined with microkinetic analysis. Our findings indicate that isolated Pd and Pt atoms on Au(111) and Ag(111)
surfaces reduce the activation energies for the dehydrogenation of dihydrotriangulene (the precursor mole-
cule) and make the reaction energies less endothermic compared to pristine Au(111) and Ag(111). Microki -
netic analysis based on the proposed reaction mechanism reveals that alloying Au and Ag with single Pd and
Pt atoms increases the yield of triangulene at moderate temperatures. Our theoretical work suggests a ther-
mal synthesis pathway for triangulenes, offering an alternative to the prevalent tip-manipulation techniques
that could facilitate manufacturing by enabling synthesis through simple heating.

Gaussian approximation potential development for bimetallic Pt-Cu nanoparticles
Ilker Demiroglu
1Eskisehir Technical University, Turkey

Metallic nanoparticles such as Pt have an ever-increasing scientific attraction due to their high catalytic activ-
ity on a wide range of technological applications from fuel cells to dental alloys. However, some of the most
important problems in the field of metallic nanoparticle catalysts are high cost, mining difficulties and insuffi -
cient raw material resources. Therefore, one of the basic solutions is that alloying them with cheaper metals
which will not reduce their catalytic activity. In some cases, it is even possible to increase the catalytic activity
by alloying due to the synergic effects depending on the metal selected. 
Theoretical  studies  in  metallic  catalysis  concentrate  on  the  crystal  structures  and  stabilities  of  catalyst
nanoparticles and the reaction dynamics on them. In addition to the accuracy and precision limitations due to
the selected method in theoretical studies, there exist also limitations such as temperature and entropic ef -
fects, which are not generally considered especially in quantum mechanical methods. Although such calcula -
tions can be made on device operating temperatures by using techniques based on molecular dynamics sim-
ulations, they have limitations especially for quantum mechanics level studies as these techniques require
much larger system sizes and need very long simulation times. Therefore, systems in simulations for cataly -
sis cannot reach experimental sizes and they are limited to ideal and ordered crystal structures. However,
actual catalyst materials in experiments usually have defects and mixed phase structures. Although calcula-
tions for large systems can be reachable by techniques based on classical mechanics using force fields, the
accuracy of these calculations are quite limited because they do not include electronic interactions. At this
point, machine learning potentials such as GAP started to gain importance in literature due to their potential
to generate the accuracy level of quantum mechanics-based techniques. 
In this respect, the main goal is set to generate Gaussian Approximation Potential that has quantum me-
chanical accuracy using machine learning techniques for actual size nanoparticles of Pt-Cu alloys. Thus,
technologically important Pt-Cu alloy nanoparticles are investigated first by quantum mechanical level molec-
ular dynamics simulations and then the results are used as training set to develop machine learning type
GAP potentials. The one-to-one energy and force comparison of DFT and GAP potentials gives good linear
relationship both for training and validation sets. Furthermore, the structural optimization results obtained
from GAP potentials show very promising accuracy. 
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Electronic Structure and Long Range Interactions

Efficient ensemble averaging methods to study electronic structure at finite temper-
ature from first principles calculations using neural network
Niraj Aryal1, Sheng Zhang2, Weiguo Yin1, Gia-Wei Chern2

1Brookhaven National Laboratory, United States
2University of Virginia, Charlottesville, Virginia, United States

Calculating electronic and lattice properties of materials at finite temperature in the presence of disorder and
defects is important for data-driven design and discovery of materials. While various perturbative and non-
perturbative methods exist to calculate finite temperature properties within first-principles calculations, they
are not without limitations. Here, we propose an alternative group theory-based supervised machine learning
(ML) non-perturbative approach which can reduce the computational cost of such finite temperature calcula -
tions. We demonstrate that our Density functional theory+ML based approach, after appropriate training and
neural network optimization, can (i) reduce the number of DFT calculations necessary to perform ensemble
average for a given temperature and (ii) efficiently predict the temperature dependence of electronic band
gap thereby making finite temperature electronic structure calculations computationally tractable.

Learning the density matrix, a symmetry rich encoding of the electronic density.
Pol Febrer Calabozo1, Peter B. Jørgensen2, Miguel Pruneda3, Alberto García4, Arghya Bhowmik2

1ICN2, Spain
2DTU, Denmark
3CINN, Spain
4ICMAB, Spain

In the most recent years, the electronic density has been getting attention as a target for machine learning
(ML) models due to the amount of information it contains. In fact, density functional theory (DFT) proposes
that all ground state electronic properties of an atomic system should be inferable from it. The last advances
in ML interatomic potentials have shown that taking into account the equivariance of the data (e.g. forces
should rotate when the system is rotated) greatly enhances the learning capacity while needing less data to
train. In this context, equivariant models that predict the electronic density have quickly appeared. These
models predict scalar values on a real space grid or coefficients for a density fitting expansion. DFT codes
with atom-centered basis sets, however, compute the electronic density by products of orbitals. The coeffi -
cients of these products follow the equivariance of products of spherical harmonics, which is of higher order
than the target values for the previous approaches. In our work, we target the density matrix, which contains
these coefficients. By doing so, we force the model to learn more meaningful details about the atomic inter-
actions. The computation of the density matrix scales linearly with system size and the representation is
more compressed than that of a 3D grid, resulting in better data efficiency. In this talk, we present the archi -
tecture of our models and the results of predicting electronic densities, which show similar performance as
state-of-the-art grid based models. We also show the results of computing properties directly from the pre-
dicted  densities  (energy,  dipole  moments).  Finally,  we  feed  the  predicted  densities  into  DFT  as  initial
guesses, which results in a reduced number of self consistent field (SCF) iterations to reach convergence.

dxtb - an efficient and fully differentiable framework for extended tight-binding
Marvin Friede1, Christian Hölzer1, Sebastin Ehlert (2)2, Stefan Grimme1

1University of Bonn, Germany
2(2) AI4Science, Microsoft Research, Netherlands

Automatic differentiation[1] (AD) emerged as an integral part of machine learning, enabling rapid prototyping
and model development by allowing gradient-based optimization without involved analytical derivatives. Re-
cently, the capabilities of AD were also recognized in the field of quantum chemistry.[2,3] In this work, we
present  dxtb -  an open-source, fully differentiable framework for semi-empirical  extended tight-binding[4]
(xTB) methods. Developed entirely in Python and leveraging PyTorch for array operations, dxtb focuses on
extensibility and user-friendliness, while remaining computationally efficient. Through comprehensive code
vectorization and optimization, we closely rival the speed of compiled xTB programs for high-throughput cal-
culations of small molecules. The excellent performance also scales to large systems, and batch operability
yields additional benefits for execution on massively parallel hardware. We showcase the simplicity of obtain-
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ing derivatives with AD by calculating various molecular and spectroscopic properties. dxtb streamlines opti-
mization tasks, for instance, in the development and parametrization of novel tight-binding methods. Further-
more, the framework offers seamless integration of semi-empirical quantum chemistry in machine learning
models, paving the way for physics-inspired end-to-end differentiable models. Exploiting the inherent syner-
gies of such tandem approaches,[5] we envision dxtb as an extensible foundation for hybrid machine learn-
ing approaches.

[1] A. Griewank, A. Walther, Evaluating Derivatives, 2008
[2] A. McSloy, G. Fan, W. Sun, C. Hölzer, M. Friede, S. Ehlert, N. Schütte, S. Grimme, T. Frauenheim, B. Aradi, The
Journal of Chemical Physics, 158,  (2023)
[3] X. Zhang, G. Chan, The Journal of Chemical Physics, 157,  (2022)
[4] C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seibert, S. Spicher, S. Grimme, WIREs. Comput.
Mol. Sci., 11,  (2020)
[5] N. Fedik, B. Nebgen, N. Lubbers, K. Barros, M. Kulichenko, Y. Li, R. Zubatyuk, R. Messerly, O. Isayev, S. Tretiak,
The Journal of Chemical Physics, 159,  (2023)

GP3-xTB: a general purpose self-consistent tight-binding quantum chemical 
method
Thomas Froitzheim, Marcel Müller, Andreas Hansen, Stefan Grimme
1University of Bonn, Germany

We present our third-generation extended tight-binding (xTB) model named GP3-xTB. It aims at
general-purpose (GP) applicability in chemistry, going beyond the special-purpose parametrization
for geometries, frequencies, and non-covalent interactions (GFN) of previous xTB-versions [1,2].
The centerpiece of the new method is the molecule-optimized adaptive minimal valence basis set
q-vSZP [3], which allows for a different radial expansion of basis functions on symmetry-distinct
atoms in a molecule. Beyond improvements to the basis set, the GP3-xTB Hamiltonian is aug-
mented by three main features: (i) approximate non-local Fock exchange to emulate the behavior
of range-separated hybrid DFT, (ii) atomic correction potentials (ACP [4]) to introduce anisotropy
into the minimal basis, and (iii) a complete range-dependent expansion of the electrostatic interac-
tions up to third-order,  including a novel first-order term to improve the description of  charged
species. Together with a substantially enlarged and diverse training set for elements up to Z=103,
GP3-xTB approaches DFT accuracy more closely and for a wider range of chemical properties
such as barrier  heights,  ionization potentials,  or thermochemistry,  than previous semi-empirical
methods at only slightly  increased computational  cost.  In conjunction with the current develop-
ments of dxtb, a fully differentiable implementation of the xTB methods, GP3-xTB offers an ideal
platform for machine-learning applications and feature generation.

[1] C. Bannwarth, S. Ehlert, S. Grimme, J. Chem. Theory Comput., 15, 1652-1671 (2019)
[2] S. Grimme, C. Bannwarth, P. Shushkov, J. Chem. Theory Comput., 13, 1989-2009 (2017)
[3] S. Grimme, M. Müller, A. Hansen, The Journal of Chemical Physics, 158,  (2023)
[4] V. Prasad, A. Otero-de-la-Roza, G. DiLabio, J. Chem. Theory Comput., 18, 2913-2930 (2022)

Predicting the electronic densities and nuclear dynamics of 2d materials
Zekun Lou1, Alan Lewis2, Andrea Grisafi3, Mariana Rossi4
1Max Planck Institute for the Structure and Dynamics of Matter, Germany
2York University, United Kingdom
3Institut Sciences du Calcul et des Données, France
4MPI for the Structure and Dynamics of Matter, Germany

Machine Learning (ML) methods have significantly advanced the field of materials modeling. A comprehen-
sive ML framework at the nanoscale needs to target both nuclear and electronic subsystems. The electronic
density is a fundamental quantity that allows accessing several material properties, in particular within the
framework of density-functional theory. However, obtaining a ground-state electronic density of large materi -
als is prohibitive due to the cost of converging the self-consistent procedure and simulating nuclear motion
with quantum-mechanical accuracy adds an even larger overhead. For 2D materials and 2D twisted bilayer
materials, large unit-cell sizes are necessary to ensure commensurability and to capture the real-space dy-
namics of quantum phases such as charge-density-waves [1].
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Here  we show improvements  to  the  symmetry-adapted  learning  of  three-dimensional  electron  densities
(SALTED) method which allows one to bypass the cost of performing a DFT calculation and instead predict
the ground-state electronic density based only on atomic positions and composition [2]. These improvements
allow us to obtain accurate predictions of the density for a diverse set of twisted bilayer systems, when train-
ing on small unit cells and predicting on large unit cells with a low twisting angle. We also show that these
densities lead to good band-structures and thus the prediction of several electronic properties of large struc -
tures. In particular, we show results for twisted bilayer graphene, hBN, ZrS2 and MoS2, and discuss the cur -
rent limitations on accuracy of this method. Finally, we couple SALTED predictions of twisted-bilayer systems
to thermally displaced structures obtained from machine-learned potentials trained on smaller-scale DFT
data from GGA and hybrid exchange-correlation functionals [3].
[1] https://scipost.org/SciPostPhys.16.2.046
[2] https://pubs.acs.org/doi/full/10.1021/acs.jctc.1c00576
[3] https://arxiv.org/abs/2403.10343

Multifidelity machine learning for quantum chemical properties
Vivin Vinod
1University of Wuppertal, Germany

The accurate but fast calculation of quantum chemical (QC) properties such as molecular excited states is
still computationally expensive. For many applications, a detailed knowledge of such properties is of key im-
portance thereby demanding high accuracy calculations. Machine learning (ML) methods have reduced the
compute cost of such properties in the recent past. However, these bring along a new bottle neck: the cost of
generating high accuracy training data. This still remains a challenging issue in the application of ML for QC.
Multifidelity machine learning (MFML) methods provide a respite to this hurdle by requiring very little training
data from high accuracies which is combined with cheaper and less accurate data to achieve the accuracy of
the costlier level. In this work, some key results which show the reduction of the cost of training data are
shown for excitation energies at DFT accuracy. In addition, a novel methodological improvement, optimized
MFML (o-MFML) is shown. Some further results are also discussed which establish MFML as a superior
method to conventional ML methods employing single fidelity training data sets.

[1] V. Vinod, U. Kleinekathöfer, P. Zaspel, Mach. Learn.: Sci. Technol., 5, 015054 (2024)
[2] V. Vinod, S. Maity, P. Zaspel, U. Kleinekathöfer, J. Chem. Theory Comput., 19, 7658-7670 (2023)

Charge equilibration in machine learning potentials
Martin Vondrák
1Fritz Haber Institute of the Max Planck Society, Germany

Machine learning (ML) techniques have recently been shown to bridge the gap between accurate first-princi-
ples methods and computationally cheap empirical potentials. This is achieved by learning a mapping be-
tween a systems structure and its physical properties. State-of-the-art models typically represent chemical
structures in terms of local atomic environments to this end. This inevitably leads to the neglect of long-range
interactions (most prominently electrostatics) and non-local phenomena (e.g. charge transfer), resulting in
significant errors in the description of polar molecules and materials (particularly in non-isotropic environ-
ments). To overcome these issues, we are developing ML frameworks for predicting charge distributions in
molecules based on Charge Equilibration (QEq). Here, atomic charges are derived from a physical model us-
ing environment-dependent atomic electronegativities. In this contribution, we will demonstrate the strategies
for  creating long-range interatomic potential  termed Kernel  Charge Equilibration (kQEq) combining local
Gaussian Approximation Potential (GAP), and an approach of incorporating QEq into the equivariant MACE
neural network scheme.

Deep learning functionals based on Møller-Plesset adiabatic connection for non-co-
valent interactions
Heng Zhao
1University of Fribourg, Switzerland

The modeling of non-covalent interactions (NCIs) is crucial in many areas of chemistry and material science,
as these interactions often govern the structure, stability, and function of complex molecular systems. To im-
prove pure quantum chemical simulations of NCIs, we propose an interpolation method along the Møller–
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Plesset adiabatic connection (MP AC), which approximates the correlation energy by combining MP2 at
small coupling strengths and the strong-coupling limit of the MP AC. By leveraging deep learning techniques,
we obtain models ensuring size-consistency and the accurate capture of NCIs, which particularly shines for
pi-pi stacking dominated systems. While our models have the same cost as double hybrids, they offer major
improvements over double hybrids for noncovalent interactions.
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Magnetic Observables

Machine learning spin-pure excited states of organic radicals
Tim Hele, James Green, Jingkun Shen, Keith Butler
1University College London, United Kingdom

Recent years have seen an explosion of interest in organic radicals due to their promise for organic light-
emitting diodes and molecular qubits [1]. However, simulating their electronic structure is very challenging
due to the large size of the molecules and their open-shell nature, which can lead to spin-contaminated re-
sults. Very recently two of us have combined extended configuration interaction singles (XCIS) and Pariser-
Parr-Pople (PPP) theory to create a fast, accurate and spin-pure method for radical excited state calculation
which we call ExROPPP [2]. The original proof-of-concept demonstration only considered hydrocarbon radi-
cals and extending this to heteroatoms would greatly extend its applicability.  However, as far as we are
aware there is no consistent published heteroatom parameter set. We are therefore using machine learning
to optimize the parameters of ExROPPP for carbon and heteroatoms by fitting its predictions to experimental
measurements and high-level calculations. We believe this is the first application of machine learning to the
spin-pure excited states of radicals.

[1] X. Ai, E. Evans, S. Dong, A. Gillett, H. Guo, Y. Chen, T. Hele, R. Friend, F. Li, Nature, 563, 536-540 (2018)
[2] J. Green, T. Hele, The Journal of Chemical Physics, 160,  (2024)

Applying a well-defined energy density for machine-learned density functionals
Elias Polak, Stefan Vuckovic, Heng Zhao
1University of Fribourg, Switzerland

The recent integration of machine learning techniques in density functional theory (DFT) has established a
powerful framework for developing next generation density functionals. While robust modelling of the ex-
change-correlation requires a well-defined energy density, conventional training sets usually rely on global
quantities. We propose the application of the local slope in the non-interacting limit of the adiabatic connec-
tion approach in DFT [1]. The presentation will elucidate the methods for an efficient implementation of this
quantity, with a focus on its spin-resolved components and its regularized version. Furthermore, we will high-
light the potential of this strategy in paving the way for the next generation of machine-learned local dynamic
hybrid functionals. Our results show a marked improvement in the prediction of observables while also main -
taining computational efficiency.

[1] S. Vuckovic, T. Irons, A. Savin, A. Teale, P. Gori-Giorgi, J. Chem. Theory Comput., 12, 2598-2610 (2016)
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Spectroscopic Observables

Uncovering the potential of applying principal component analysis (PCA) on Raman
spectra of biochar
Raymond Chen, Ewa J. Marek
1University of Cambridge, United Kingdom

Raman spectroscopy is a powerful tool, which can be used for analysing nanostructure features of biochar,
but the plethora of methods for band fitting and analysis makes finding the right approach for uncovering all
relevant characteristics difficult, and questions what information remains undiscovered in Raman spectra [1].
To address both problems, we applied principal component analysis (PCA) on Raman spectra from biochar
produced by pyrolysing dried Sargassum algae and pelletised Sargassum algae powder in N2 at 260-460°C.
The first principal component (PC) clearly correlates with the pyrolysis temperature and the third PC showed
a difference between Raman spectra from dried Sargassum and Sargassum pellets. Furthermore, the pyroly-
sis temperature of the biochar samples could be distinguished by solely considering the values of the first
PC, even if PCA is only applied on a commonly neglected region of biochar Raman spectra (500-1000 cm -1),
indicating unexplored information. Further analysis revealed differences in the contributions of Raman shift
regions to a PC value between the typically analysed region of 1200-1700 cm -1 and commonly neglected re-
gion of 500-1000 cm-1, possibly indicating that information is contained differently in the region 500-1000 cm -

1. These results demonstrate the capabilities of PCA in analysing Raman spectra of biochar samples with dif -
ferent characteristics and revealing hidden information in Raman spectra of biochar.

[1] J. Xu, Q. He, Z. Xiong, Y. Yu, S. Zhang, X. Hu, L. Jiang, S. Su, S. Hu, Y. Wang, J. Xiang, Energy. Fuels., 35, 2870-
2913 (2020)

Machine learning isotropic g values of organic battery materials
Davis Thomas Daniel1, Souvik Mitra2, Rüdiger-A. Eichel1, Diddo Diddens1, Josef Granwehr1

1Forschungszentrum Jülich, Germany
2University of Münster, Germany

Organic radical polymers with pendant radical centers are used as active materials in organic radical batter-
ies (ORBs) and can be investigated using electron paramagnetic resonance spectroscopy owing to their
paramagnetic nature. EPR spectra of such species with closely-packed spin centers are primarily charac-
terised by an isotropic g value which describes the interaction of the electron spin with the applied magnetic
field. The g-shift is analogous to chemical shifts in nuclear magnetic resonance spectroscopy and is charac-
teristic of the chemical identity of the paramagnetic system and its environment. EPR g tensors can be calcu -
lated at the DFT level which allows for the use of g values as a parameter which can be experimentally veri -
fied and theoretically computed to validate simulated paramagnetic systems, such as organic cathodes. A
severe drawback of applying DFT to obtain g values of large, disordered systems like polymers, is its un-
favourable scalability with system size and high computational expense. Machine learning methods offer a
viable alternative to predict spectroscopic observables with comparable accuracy with low computational de-
mands. Herein, a machine learning workflow which explores the prediction of g values of from structural fea -
tures of radical polymers is presented. Polymer structures for generating the training data was sourced from
molecular  dynamics simulations of  an organic  cathode at  different  states of  charge.  The model  is  then
trained on DFT-derived g values which are benchmarked against experimental g-values obtained from in
operando EPR measurments of an ORB. To represent the polymers, smooth overlap of atomic positions and
many body tensor representation were used along with structural properties of the polymer as features. The
model is evaluated with respect to its ability to predict the evolution of g along MD trajectories for polymer
structures with varying radical density. Mean deviations of ML-predicted g values and DFT-derived g values
were found to be on the order of 0.0001 which is less than the variation in g observed experimentally using
EPR and calculated using DFT. Furthermore, the ML model was found to be sensitive to small structural vari-
ations corresponding to small g-shifts and important structural features of the polymer related to g-value pre -
dictions were identified. As the computational cost of g-value predictions using the ML model is smaller than
DFT, the protocol represents a viable alternative to predict g values for simulated systems with a larger sys-
tem size.[1] As the method has more favourable scalability than DFT to larger systems, state of charge de-
pendent g-shifts for large-scale MD simualtions of ORBs may be computationally accessible, allowing for
comparison with experimental ORB set-ups and further optimisation of simulated environments.

 Page 38 of 45



[1] D. Daniel, S. Mitra, R. Eichel, D. Diddens, J. Granwehr, J. Chem. Theory Comput., 20, 2592-2604 (2024)

Theoretical nonlinear vibrational spectroscopy of water in slit pores
Banshi Das, Sergi Ruiz-Barragan, Dominik Marx
1Ruhr-Universität Bochum, Germany

Water exhibits surprisingly different properties when it is confined between two parallel walls at nanometer
distances with reference to bare interfaces, where the interfacial region is connected with a bulk like region.
Although water under confinement has great importance in the biological as well as technological realms, its
properties are being disclosed only recently due to breathtaking advances in the fabrication of ultranarrow slit
pore  confinement  systems  with  different  environments,  geometries,  and  sizes.  Unlike  interfacial  water,
nanoconfined water  has not  yet  been probed using vibrational sum frequency generation (VSFG) spec-
troscopy – a technique that can efficiently probe interfacial water. This might be due to the fact that most
nanoconfined systems used in experiments, such as graphene (GRA)-based nanodevices, are centrosym-
metric in nature and hence VSFG inactive. In an effort to explore the VSFG technique to study the confine -
ment effects of aqueous systems, we have modelled an asymmetrically nanoconfined system in a slit pore
geometry where water is being sandwiched between GRA and boron nitride sheets, which can be consid-
ered as a slightly perturbed form of GRA-GRA slit pores that breaks their centrosymmetry. Using an elec -
tronic  structure-based parameterized  approach  within  force  field-based molecular  dynamics  simulations,
VSFG spectra of such confined water have been computed from the monolayer limit up to thick water lamel-
lae where the confining walls are largely decoupled.

Predicting the spectra of semiconductors and insulators
Malte Grunert, Max Großmann, Erich Runge
1TU Ilmenau, Germany

Based on ab-initio calculations for thousands of crystalline semiconductors and insulators at varying levels of
theory, we employ deep learning techniques to predict the optical spectra of semiconductors and insulators
in the visible and ultraviolet region.
Comparing our results to state-of-the-art approaches for related static properties like the static refractive in -
dex, we present our first promising findings. Furthermore, we also present various related aspects, e.g., how
learning the color of a material compares to the full frequency dependence of its relative permittivity and
whether learning additions to lower theory levels performs better than learning the higher theory levels di-
rectly.

Vibrational circular dichroism
Sascha Jähnigen
1Freie Universität Berlin, Germany

Chiroptical spectroscopy provides an increasingly important, cost-effective methodology for the study of chi-
ral substances in the condensed phase. In recent years, vibrational circular dichroism (VCD) – the chiral form
of IR absorption spectroscopy – has come into focus as a very sensitive probe of molecular conformation
and environment. It has been applied to a wide range of molecules including natural products, host-guest
systems, proteins, nanoparticles, or catalysts, as well as the formation of chiral phases from achiral subunits.
VCD differs  from electronic  circular  dichroism  in  that  it  relates  directly  to  vibrational  transitions  in  the
supramolecular chiral framework, such as functional groups connected by covalent or non-covalent interac-
tions.
VCD therefore delivers a wealth of stereochemical information, yet the spectra cannot straightforwardly be
interpreted. It requires both accurate calculations on the basis of ab initio theory (at least DFT level), and an
accurate  sampling  of  the  conformational  phase  space  of  the  molecular  system.
This is why ab initio molecular dynamics (AIMD), which can deliver both accuracy and sampling, provide an
attractive means to calculate VCD spectra. However, their tremendous computational cost represents a true
bottleneck when harvesting the potential of VCD. In particular the calculation of the spectroscopic properties
for individual time frames exacerbates the already high costs of the DFT calculation.
While the calculation of IR absorption only requires the electric dipolar resonse of the electrons to a vibra-
tional transition, VCD in addition relies on the magnetic dipolar response. This can be done in the realms of
quantum perturbation theory, which has become a standard feature of many quantum chemical codes and
has been pushed forward by us in the realms of AIMD simulations using Nuclear Velocity Perturbation The-
ory (NVPT).
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We present here our recent results and efforts to understand the nature of the chiroptical response within
VCD spectroscopy. It is our aim to invest our gained knowledge about the structure of the dipolar response
properties, both electric and magnetic, in order to implement efficient algorithms that are apt to obtain these
properties through machine learning (ML). In particular, we devote our attention to the atomic polar tensor
(APT) and the atomic axial tensor (AAT) as molecular properties that only depend on the positions, but not
the (MD-)velocities of the atoms. We present our examinations of the locality and transferability of these ten-
sors, and recent developments to extract effective tensors from AIMD simulations and hope for a broad feed-
back from the ML community on this workshop.

[1] S. Jähnigen, Angew. Chem. Int. Ed., 62,  (2023)
[2] S. Jähnigen, K. Le Barbu‐Debus, R. Guillot, R. Vuilleumier, A. Zehnacker, Angew. Chem. Int. Ed., 62,  (2022)
[3] K. Le Barbu-Debus, J. Bowles, S. Jähnigen, C. Clavaguéra, F. Calvo, R. Vuilleumier, A. Zehnacker, Phys. Chem.
Chem. Phys., 22, 26047-26068 (2020)
[4] A. Scherrer, R. Vuilleumier, D. Sebastiani, The Journal of Chemical Physics, 145,  (2016)

Ion effects on terahertz spectra of microsolvated clusters
Aman Jindal1, Philipp Schienbein1, Prashant K Gupta (2)2, Dominik Marx1

1Ruhr-Universitaet Bochum, Germany
2(2) Department of Chemistry, Central University of Kashmir, India

Terahertz (THz) spectroscopy deals with radiations of frequencies from 0.1 to 10 THz (1 THz = 1012 Hz = 1
ps−1). The fuctuations in water hydrogen-bonding network also occur at the sub-ps to ps timescale, making
THz spectroscopy a sensitive tool to probe these changes. Here, we have studied these changes on addition
of simple ions in water clusters from THz spectral features. The THz spectra of finite size Cl -(H2O)n clusters
(n = 4, 7, 20 and 64) are computed from their ab-initio molecular dynamics trajectories, in terms of only a few
auto- and cross-correlations (including the second solvation shell). The focus is to find out if ion hydration
can be understood by studying the THz regime of these small ion-water clusters in the gas phase. To do so,
we compare the spectra of clusters with their Cl-(aq) bulk solutions, and seek answers to the following ques-
tions: What is the effect of ion on water molecules in its neighboring shells? What happens when the cluster
size is gradually increased? Is there an optimum cluster size that might just be sufficient to reproduce the
bulk THz responses?

Complexions at the electrolyte/electrode interface in solid oxide cells
Patricia König, Hanna Türk, Xuan Quy Tran, Axel Knop-Gericke, Thomas Lunkenbein, Christoph
Scheurer
1Fritz-Haber-Institut of the Max Planck Society, Germany

Degradation of the air electrode in electrolysis mode during the oxygen evolution reaction (OER) severely
limits the commercial adoption of solid oxide cells (SOCs). Up to now, the atomistic structure of this active
catalyst region is essentially unknown, which prevents a detailed analysis of the actual degradation mecha -
nisms.
In prior research, we identified a complexion at the solid/solid interface of the sintered anode, featuring par-
tial  amorphization and varying elemental  distributions deviating from the confining bulk phases.  Located
around the complexion area, we propose deactivation mechanisms driven by strong cation inter-diffusion. To
assess if these cation migrations impede active sites and cell functionality, we conduct a large-scale study on
possible active site structural motifs. We sample structures with polarons near oxygen defects, altering ion
dopant concentrations to simulate ion migration effects. By employing DFT for electron structure calculations
and computing EELS spectra, we link oxygen defects and their proximity to polarons to distinctive peaks in
experimentally recorded EELS spectra. Ultimately, this approach aids in identifying active site structures and
deactivation mechanisms, enhancing future cell design with improved efficiency and durability.

Can machine learning accelerate the discovery of new photovoltaics?
Matthew Walker, Keith Butler
1UCL, United Kingdom

The discovery of photovoltaic (PV) materials has historically largely consisted of trial-and-error: using chemi-
cal trends to suggest materials with similar performances. A material's band-gap is a key determinant of its
PV efficiency due to the trade-off of high voltage (current) at large (small) band-gaps. The Shockley-Queisser
limit was calculated in the 1960s, suggesting a maximal efficiency of 30% would require a material with a
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band-gap of 1.1 eV. More recently, spectroscopic limited maximum efficiency (SLME) theory was developed
to establish a more rigorous approach, including the use of a material's absorption spectrum rather than as-
suming a step function at the band-gap. However, calculating these spectra at high accuracy is a computa -
tionally intensive process, implicitly requiring an accurate band-gap which is notoriously difficult with cheap
DFT. With the increased availability of large datasets and powerful GPUs, machine learning becomes an at -
tractive option to 'fill in the gaps' in the SLME workflow, replacing ab initio calculations by predicting various
scalar and vector quantities. If successful, this would facilitate rapid screening of chemical space to identify
high-efficiency, previously unexplored PV materials. In this work we use graph neural networks (ALIGNN) to
establish which parts of this workflow can be accelerated by machine learning and how the accuracy of effi -
ciency estimates is affected. 

[1] W. Shockley, H. Queisser, Journal of Applied Physics, 32, 510-519 (1961)
[2] L. Yu, A. Zunger, Phys. Rev. Lett., 108, 068701 (2012)
[3] K. Choudhary, B. DeCost, npj. Comput. Mater., 7, 185 (2021)
[4] R. Woods-Robinson, Y. Xiong, J. Shen, N. Winner, M. Horton, M. Asta, A. Ganose, G. Hautier, K. Persson, Matter, 6,
3021-3039 (2023)
[5] S. Kim, M. Lee, C. Hong, Y. Yoon, H. An, D. Lee, W. Jeong, D. Yoo, Y. Kang, Y. Youn, S. Han, Sci. Data., 7, 387
(2020)
[6] D. Fabini, M. Koerner, R. Seshadri, Chem. Mater., 31, 1561-1574 (2019)

Modelling tensorial properties of zeolites using machine learning
Daniel Willimetz, Lukáš Grajciar, Andreas Erlebach, Christopher J. Heard, Carlos Bornes
1Charles University, Czech Republic

Zeolites are microporous aluminosilicates crucial in various industries, which often require theoretical calcu-
lations for deeper understanding of their behaviour. It is essential to investigate the zeolites at operando con-
ditions, modelling the chemical composition (including molecules present in the zeolite channels) and tem-
perature as close to the corresponding experimental situation as possible.[1] However, it is computationally
prohibitive to do such calculations at the ab initio level. Instead, we have developed highly accurate reactive
neural network potentials (NNPs) that lead to more than a 103 computational speedup.[2, 3] The accuracy of
our NNPs has been further validated through collaboration with Prof. Sauer’s group from Humboldt Univer-
sity in Berlin, who is carrying out  high-level QM/QM  benchmarking of the NNP predictions in our undergoing
joint study of water adsorption in zeolites.
By employing NNPs, we can conduct extensive sampling of the configurational space via ns-long molecular
dynamics (MD) simulations, carried out for the experimentally relevant model system (chemical composition
including explicit water solvation). Subsequently, the MD simulation data can be sampled and analyzed using
another machine learning (ML)-based method. This 'double machine learning' approach has been applied to
predict NMR chemical shifts using kernel ridge regression predictor as the NMR shift predictor.[4] Modelling
NMR chemical shifts can provide insights into the distribution of aluminium in the zeolite framework, which
has been shown to modulate the catalytic properties of zeolites, making it an attractive area of research.[5]
Through collaboration with Dr. Teresa Blasco from the Instituto de Tecnología Química, we have demon-
strated excellent agreement between experimental data and calculations, providing essential information 
about the aluminium distribution that cannot be obtained by any experimental method alone. To our knowl -
edge, the previous studies have only calculated chemical shifts for a single structure corresponding to a mini-
mum on the potential energy surface (PES), making ours the first study to consider operando conditions for
interpreting experimental NMR spectra in zeolitic materials.
In our future research, our objective is to develop and train neural network-based models capable of predict -
ing entire NMR shielding tensors, considering and benchmarking currently two avenues to achieve this goal,
i.e., via using equivariant message passing NNs to learn tensors directly [6] or/and leveraging NNs predicting
energies explicitly dependent on the external fields.[7] This will enable us to simulate NMR spectra under
operando conditions, allowing us to further interpret experimental data.
In conclusion, our research underscores the importance of utilizing ML to comprehend zeolite dynamics un-
der operando conditions. Through the application of the double ML approach, we investigated NMR shifts in
experimentally relevant scenarios. These ML advancements hold the potential to provide deeper insights into
zeolite properties within realistic environments and we hope to develop more ML-based applications in fur -
ther work.

[1] C. Lei, A. Erlebach, F. Brivio, L. Grajciar, Z. Tošner, C. Heard, P. Nachtigall, Chem. Sci., 14, 9101-9113 (2023)
[2] A. Erlebach, M. Šípka, I. Saha, P. Nachtigall, C.J. Heard and L. Grajciar, arXiv:2307.00911 (2023)
[3] A. Erlebach, P. Nachtigall, L. Grajciar, npj. Comput. Mater., 8, 174 (2022)
[4] D. Willimetz,  Theoretical investigation of 27Al chemical shifts dependence on water amount and temperature in zeo-
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lite MFI, bachelor thesis (2023)
[5] T. Liang, J. Chen, Z. Qin, J. Li, P. Wang, S. Wang, G. Wang, M. Dong, W. Fan, J. Wang, ACS Catal., 6, 7311-7325
(2016)
[6] K. Schütt, O. Unke and M. Gastegger, PMLR 139:9377-9388 (2021)
[7] M. Gastegger, K. Schütt, K. Müller, Chem. Sci., 12, 11473-11483 (2021)

Decoding the fucose migration products in blood group epitopes
Murat Yaman, Vasilis Kontodimas
1City University of New York, United States

Fucose is a monosaccharide in the L-conformation that lacks a hydroxyl group on C6 and it is involved in
various biological  processes such as signaling,  selectin-dependent  leukocyte  adhesion,  and intercellular
communication. However, during the mass spectrometry (MS) analysis, fucose can migrate along a glycan
sequence leading to incorrect glycan structure assignments and this has significant implications for MS of
carbohydrate analysis, as fucose migration can readily occur following in-source activation of intact ions dur -
ing the nanoESI process. In this study, we explored the potential internal rearrangement reaction of fucosy-
lated blood group antigens. These trisaccharide structures do not differ in composition, but rather in connec -
tivity and configuration. We compared the density functional theory (DFT) calculations with the available ex-
perimental collision cross section (CCS) and cryogenic IR spectroscopy data. The DFT results of the proto -
nated Lewis x and BG-H2 antigens, which both have a T2 core, did not agree with the experimental cryo-IR
and CCS values. Instead, extensive sampling of all possible isomers revealed that another structure, where
the fucose moiety is linked to the galactose of the T2 core via an α 1-6 glycosidic linkage, provided the best
match with the experimental findings. Similar analysis of protonated ions of Lewis a and BG-H1 antigens,
which contain on the T1 core, resulted in the assignment of the experimental spectra to the structures of the
respective parent ions. The discrepancy in the results raises the question and necessitate an exploration into
why fucose migration is evident in the Lewis x and BG-H2 pair, while the Lewis a and BG-H1 pair inhibits the
migration. The internal rearrangement reaction is triggered by the proximity of the glycosidic bond of the fu-
cose-T2 core to the presence of a mobile proton. In contrast, the Lewis a and BG-H1 structures lacked the
mobile proton to initiate the migration, as the glycosidic bond of fucose moiety to the T1 core was not suffi-
ciently close. These findings show that the migration of fucose moiety is a sequence-dependent phenome-
non.
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Databases & Reaction Networks

Unsupervised collective variables for exploring expanded configurational space
Rangsiman Ketkaew, Sandra Luber
1University of Zurich, Switzerland

We develop a machine learning algorithm so-called Deep Learning AutoEncoder Neural Network (DAENN)
algorithm for generalizing collective variables (CVs) for enhanced sampling. The essential novelties of the
DAENN are a self-learning engine that applies a specific-purpose loss function using the min-max technique
and eXtended Social PeRmutation INvarianT (xSPRINT) representation. To train a model, the DAENN re-
quires only a trajectory of reactant conformers as input and no intermediate or product structures. Carefully
manifested by primitive organic reactions such as the Diels-Alder reaction, DAENN-generated CVs are capa-
ble of identifying transitions between rare-event metastable states on the expanded configurational space.
The results show that the adopted CVs give accurate computed free energy that is in line with those obtained
by previously developed CVs and experimental results. In addition, the proposed method is implemented in
Deep Learning for Collective Variables (DeepCV), a computer code that provides an efficient and customiza-
ble implementation of the DAENN, which can communicate with other molecular dynamics software, namely
CP2K and PLUMED.

[1] R. Ketkaew, S. Luber, J. Chem. Inf. Model., 62, 6352-6364 (2022)
[2] R. Ketkaew, F. Creazzo, S. Luber, J. Phys. Chem. Lett., 13, 1797-1805 (2022)

Modeling the potential energy surfaces of the [H2O - Kr]+ system with gaussian 
process regression
Jenne Van Veerdeghem, Jérôme Loreau
1KU Leuven, Belgium

The detection of several hundreds of organic molecules in the interstellar medium indicates a rich chemistry,
[1,2] and is notably influenced by the presence of molecular and atomic ions. Interactions with charged parti -
cles are assumed to exhibit barrierless energy landscapes, making them especially important in low temper-
ature environments such as interstellar molecular clouds and star-forming regions. The chemical evolution
and composition of these interstellar regions is determined through kinetic models which rely on the availabil -
ity of rate constants over a wide range of temperatures. One pertinent issue is the lack of rate constants de-
termined at low temperatures (< 100 K).
Ion-molecule reactions are often modeled through capture theory, which is not usually able to include the in-
fluence of short-range effects.[3] This can lead to severe under- or overestimation of computed rate con-
stants compared to experimentally determined rate constants.[4,5,6]
Our work aims to include short-range effects in ion-molecule interactions to improve the accuracy of rate
constants at low temperatures by designing machine learned representations of adiabatic potential energy
surfaces. Our machine learning method of choice is Gaussian process regression as it is able to achieve
high accuracy on limited data sets. 
As an illustration, we have modeled the first three electronic coupled states of the charge-transfer reaction
between H2O and Kr+, which has recently been studied experimentally.[7] Since H2O and H2O+ have simi-
lar geometries, the dimensionality of the potential energy surface is currently limited to the three coordinates
required to position the Kr+ atom around a frozen H2O molecule.
Ab initio structure calculations (ic-MRCI+Q/aug-cc-pVDZ) serve as the input of the model. The effect of spin-
orbit coupling of Kr+ was included through the state interaction method. The potential energy surfaces fits,
trained on around 2000 data points, achieve a root mean square error of 6 meV in the area around the po -
tential well when tested against an independent validation set. Proper physical long-range behavior is con-
served in regions with a low density of training data by using a custom mean function, removing the need to
switch to an analytical function. The training set was designed through biased Latin hypercube sampling, fa-
voring the low energy region. 
Final validation of our models will be through comparison of calculated rate constants with state-of-the-art
cold collision experiments. To this end, quasi-classical trajectory code coupled to a surface hopping algo-
rithm is currently being developed in-house to interface with our machine learning models.

[1] E. Herbst, E. van Dishoeck, Annu. Rev. Astron. Astrophys., 47, 427-480 (2009)
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[2] B. McGuire, R. Loomis, A. Burkhardt, K. Lee, C. Shingledecker, S. Charnley, I. Cooke, M. Cordiner, E. Herbst, S.
Kalenskii, M. Siebert, E. Willis, C. Xue, A. Remijan, M. McCarthy, Science, 371, 1265-1269 (2021)
[3] J. Loreau, F. Lique, A. Faure, ApJL., 853, L5 (2018)
[4] A. Gingell, M. Bell, J. Oldham, T. Softley, J. Harvey, The Journal of Chemical Physics, 133,  (2010)
[5] L. Petralia, A. Tsikritea, J. Loreau, T. Softley, B. Heazlewood, Nat. Commun., 11, 173 (2020)
[6] A. Tsikritea, K. Park, P. Bertier, J. Loreau, T. Softley, B. Heazlewood, Chem. Sci., 12, 10005-10013 (2021)
[7] A. Tsikritea, J. Diprose, J. Loreau, B. Heazlewood, ACS Phys. Chem Au, 2, 199-205 (2022)
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Mechanical Observables

Designing the phase stability in metal-organic frameworks and metal halide per-
ovskites: Two sides of the same strain coin?
Nils Clovin, Sven M.J. Rogge
Center for Molecular Modeling (CMM), Ghent University, Belgium

Disorder and strain introduced by dopants and defects have become increasingly essential to rationalise
the design of nanostructured materials like metal-organic frameworks (MOFs) and metal halide perov-
skites (MHPs) [1], [2]. Strain engineering puts this strain at the heart of the design process by mapping
the strained topology of the underlying net to its macroscopic properties, such as the material’s phase
stability [3]. Recently, we showed that such strain fields in MHPs are additive, and while their decay
was fully correlated with the position of the strain-inducing defect within the lattice, it was found to be
independent of its chemical nature [4]. This raises the question: can strain engineering constitute a ma-
terial-transcending design tool unifying the impact disorder has in both MHPs and MOFs alike?

To explore this hypothesis, we herein trained ab initio-based machine learning potentials [5] to contrast
point defects and their strain fields between two classes of MOFs and MHPs sharing the pcu topology:
the M-IRMOF-L series [M={Zn, Be, Mg, Cd, Ca, Sr, Ba}, L={0-8, 10, 12, 14, 16, 18, 20}] and CsBX3
perovskites [B={Ba, Pb, Ca, Mn, Zn, Ni}, X={Cl, Br, I}]. Besides investigating the generality of the
strain decay rate within each material class, we compare how strain fields induced in one class inform
the design of the other. To this end, we compare (i) strain fields induced by varying the metal ions in
MOFs with those induced by changing B-site cation in perovskites and (ii) strain fields induced by
changing the IRMOF linker with those induced by a change in the perovskite’s X-site halogen. This, in
turn, informs us of how we can impact the octahedral tilt and, hence, phase stability in MHPs and MOFs.

[1] A. K. Cheetham, T.D. Bennett, F.-X. Coudert, A.L. Goodwin, Dalton Trans. 2016, 45, 4113-4126. 
[2] J.A. Steele et al., J. Am. Chem. Soc. 2021, 143, 10500-10508. 
[3] S.M.J. Rogge, S. Borgmans, and V. Van Speybroeck, Matter 2023, 6, 1435-1462.
[4] J. L. Teunissen et al., J. Phys. Chem. C, 2023, 127, 23400-23411. 
[5] S. Vandenhaute et al., npj Comput Mater. 2023, 9, 19.
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