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Background
The purpose of this tutorial is not to master all parts of Gromacs’ simulation 
and analysis tools in detail, but rather to give an overview and “feeling” for the 
typical steps used in practical simulations, as well as to test the performance at 
different levels of parallelization. Since the time available for this exercise is 
rather limited we can only perform a very short sample simulation, but you will 
also have access to a slightly longer pre-calculated trajectory for analysis.

In principle, the most basic system we could simulate would be water or even a 
gas like Argon, but to show some of the capabilities of the analysis tools we will 
work with a protein: Lysozyme. Lysozyme is a fascinating enzyme that has 
ability to kill bacteria (kind of the body’s own antibiotic), and is present e.g. in 
tears, saliva, and egg white. It was discovered by Alexander Fleming in 1922, 



and one of the first protein X-ray structures to be determined (David Phillips, 
1965). The two sidechains Glu35 and Asp52 are crucial for the enzyme 
functionality. It is fairly small by protein standards (although large by simulation 
standards :-) with 164 residues and a molecular weight of 14.4 kdal- ton - 
including hydrogens it consists of 2890 atoms (see illustration on front page), 
although these are not present in the PDB structure since they only scatter X-
rays weakly (few electrons).

In the tutorial, we are first going to set up your Gromacs environments, have a 
look at the structure, prepare the in- put files necessary for simulation, solvate 
the structure in water, minimize & equilibrate it, and finally perform a short 
production simulation. After this we’ll test some simple analysis programs that 
are part of Gromacs.

Setting up Gromacs & other programs
Before starting the actual work, we need a couple of programs that might 
already be installed on your system. Since the actual installation can depend 
on your system we will do this part interactively at the tutorial, although you 
can find more detailed instructions at http://www.gromacs.org.

1. You will need a Unix-type system with an X11 window environment (look at 
the install disks if you have a mac). You can use CygWin under windows, 
although this is a bit more cumbersome, and you will also need to install a 
separate X11 server.

2. Gromacs uses FFTs (fast fourier transforms) for some interactions, in 
particular PME. While Gromacs comes with the slower FFTPACK libraries built-in, 
it is a very good idea to install the free and faster FFTW libraries from 
http://www.fftw.org. If you have an Intel mac you’re in luck, since the Gromacs 
package comes with this included. You can also find finished RPMs for x86 Linux 
on the Gromacs or FFTW sites. If you need to install this from source, unpack 
the distribution tarball with “tar -xzvf fftw-3.1.2.tar.gz”, go into the directory 
and issue “./configure --enable-float” (since Gromacs uses single precision by 
default) followed by “make” and finally become root and issue “make install”. If 
you do not have root access you can install it under your home directory, using 
the switch “-- prefix=/path/to/somewhere” when you run the configure script.

3. Install Gromacs from a package, or compile it the same way as FFTW.

4. Install PyMol from http://www.pymol.org, or alternatively VMD.

5. Install the 2D plotting program Grace/xmgrace. Depending on your platform 
you might have to install the Lesstif libraries first (www.lesstif.org), and then 
get Grace from http://plasma-gate.weizmann.ac.il/Grace/. You can also use 
gnuplot but there will be no labels on the axes.

6. To create beautiful secondary structure analysis plots, you can use the 
program “DSSP” from http://swift.cmbi.ru.nl/gv/dssp/. This is freely available for 
academic use but requires a license, so we will use the Gromacs built-in 
alternative “my_dssp” for this tutorial.

http://www.gromacs.org/
http://plasma-gate.weizmann.ac.il/Grace/


The PDB Structure - think before you simulate!
The first thing you need is a structure of the protein you want to simulate. Go 
to the Protein Data Bank at http://www.pdb.org, and search for “Lysozyme”. You 
should get lots of hits, many of which were determined with bound ligands, 
mutations, etc. We’ll use the structure 1LYD.pdb here; you can either search for 
it, or get the provided version. The structure along with other input files will be 
provided during the tutorial.

It is always a good idea to look carefully at the structure before you start any 
simulations. 
Is the resolution high enough? Are there any missing residues? Are there any 
strange ligands? Check both the PDB web page and the header in the actual 
file. Finally, try to open it in a viewer like PyMOL/VMD and see what it looks like.

Creating a Gromacs topology from the PDB file
When you believe you have a good starting structure the next step is to 
prepare it for simulation. As mentioned in the talks, we need to create a 
topology for this. Gromacs can do this automatically for you with the tool 
“pdb2gmx”. You can get some help on the available options with “pdb2gmx 
-h”. In this case, we will use a command like

pdb2gmx -f 1LYD.pdb

The program will ask you for a force field and a water model - for this tutorial I 
suggest that you use “Amber99” and the “TIP3P” water model, and then write 
out lots of information. The important thing to look for is if there were any 
errors or warnings (it will say at the end). Otherwise you are probably fine. 
Read the help text of pdb2gmx (-h) and try to find out what the different files it 
created do, and what options are available for pdb2gmx! The important output 
files are

conf.gro topol.top posre.itp

If you issue the command several times, Gromacs will back up old files so their 
names start with a hash mark (#) - you can safely ignore (or erase) these for 
now.

Adding solvent water around the protein
If you started a simulation now it would be in vacuo. This was actually the norm 
25-30 years ago, since it is much faster, but since we want this simulation to be 
accurate we want to add solvent.

However, before adding solvent we have to determine how big the simulation 
box should be, and what shape to use for it. There should be at least half a 
cutoff between the molecule and the box side, and preferably more. Due to the 
restricted time we’ll be cheap here and only use 0.5nm. To further reduce the 
volume of the box we’ll use a rhombic dodecahedron box:

editconf –f conf.gro –bt dodecahedron –d 0.5 –o box.gro



As an exercise, try a couple of different box sizes (the volume is written on the 
output!) and also other box shapes like “cubic” or “octahedron”. What effect 
does it have on the volume? The last step before the simulation is to add water 
in the box to solvate the protein. This is done by using a small pre-equilibrated 
system of water coordinates that is repeated over the box, and overlapping 
water molecules re- moved. The Lysozyme system will require roughly 6000 
water molecules, which increases the number of atoms significantly (from 2900 
to over 20,000). GROMACS does not use a special pre-equilibrated system for 
TIP3P water since water coordinates can be used with any model – the actual 
parameters are stored in the topology and force field. In GROMACS, a suitable 
command to solvate the new box would be

genbox –cp box.gro –cs spc216.gro –p topol.top –o solvated.gro

Solvent coordinates are taken from an SPC water system here, and the –p flag 
adds the new water to the topology. Before you continue it is a good idea to 
look at this system in VMD or PyMol. However, PyMOL cannot read the Gromacs 
gro file directly. There are two simple ways to create a PDB file for PyMOL:

1. Use the ability of all Gromacs programs to write output in alternative 
formats, e.g.:

genbox –cp box.gro –cs spc216.gro –p topol.top –o solvated.pdb

2. Use the Gromacs trjconv program to convert it (use -h to get help on the 
options):

trjconv -s solvated.gro -f solvated.gro -o solvated.pdb

If you just use the commands like this, the resulting structure might look a bit 
strange, with water in a rectangular box even if the system is 
triclinic/octahedron/dodecahedron. This is actually fine, and depends on the 
algorithms used to add the water combined with periodic boundary conditions. 
However, to get a better-looking unit cell you can try the commands (backslash 
means the entire command should be on a single line):

trjconv -s solvated.gro -f solvated.gro \ 
-o solvated_triclinic.pdb  -pbc nojump -ur tric

trjconv -s solvated.gro -f solvated.gro \
-o solvated_compact.pdb  -pbc nojump -ur compact

We’re not going to tell you what they do - play around and use the -h option to 
learn more :-)

Running energy minimization
The added hydrogens and broken hydrogen bond network in water would lead 
to quite large forces and structure distortion if molecular dynamics was started 
immediately. To remove these forces it is necessary to first run a short energy 
minimization. The aim is not to reach any local energy minimum, so e.g. 200 to 
500 steps of steepest descent works very well as a stable rather than 



maximally efficient minimization. Nonbonded interactions and other settings 
are specified in a parameter file (em.mdp); it is only necessary to specify 
parameters where we deviate from the default value.

--- em.mdp ---
integrator      = steep
nsteps          = 200
nstlist         = 10
rlist           = 1.0
coulombtype     = pme
rcoulomb        = 1.0
vdw-type        = cut-off
rvdw            = 1.0
nstenergy       = 10
--------------

Comments on the parameters used:
We choose a standard cut-off of 1.0 nm, both for the neighborlist generation 
and the coulomb and Lennard-Jones in- teractions. nstlist=10 means it is 
updated at least every 10 steps, but for energy minimization it will usually be 
every step. Energies and other statistical data are stored every 10 steps 
(nstenergy), and we have chosen the more expensive Particle-Mesh-Ewald 
summation for electrostatic interactions. The treatment of nonbonded 
interactions is frequently bordering to religion. One camp advocates standard 
cutoffs are fine, another swears by switched-off interactions, while the third 
wouldn’t even consider anything but PME. One argument in this context is that 
‘true’ interactions should conserve energy, which is violated by sharp cut-offs 
since the force is no longer the exact derivative of the potential. On the other 
hand, just because an interaction conserves energy doesn’t mean it describes 
nature accurately. In practice, the difference is most pronounced for systems 
that are very small or with large charges, but the key lesson is really that it is a  
trade-off. PME is great, but also clearly slower than cut-offs. Longer cut-offs are 
always better than short ones (but slower), and while switched interactions 
improve energy conservation they introduce artificially large forces. Using PME 
is the safe option, but if that’s not fast enough it is worth investigating 
reaction-field or cut-off interactions. It is also a good idea to check and follow 
the recommended settings for the force field used.
GROMACS uses a separate preprocessing program grompp to collect 
parameters, topology, and coordinates into a single run input file (em.tpr) from 
which the simulation is then started (makes it easier to move it to a separate 
su- percomputer). These two commands are

grompp –f em.mdp –p topol.top –c solvated.gro –o em.tpr

mdrun –v –deffnm em

The –deffnm is a smart shortcut that uses “em” as the base filename for all 
options, but with different extensions. The minimization should finish in a 
couple of minutes.



Carefully equilibrating the water around the 
protein
To avoid unnecessary distortion of the protein when the molecular dynamics 
simulation is started, we first perform an equilibration run where all heavy 
protein atoms are restrained to their starting positions (using the file posre.itp 
generated earlier) while the water is relaxing around the structure. This should 
really be 50-100ps, but due to the time constraints we’ll make do with 5ps 
(2500 steps) here. Bonds will be constrained to enable 2 fs time steps. Other 
settings are identical to energy minimization, but for molecular dynamics we 
also control the temperature and pressure with the Berendsen weak coupling 
algorithm. The settings used are:

------pr.mdp------
integrator      = md
nsteps          = 2500
dt              = 0.002
nstlist         = 10
rlist           = 1.0
coulombtype     = pme
rcoulomb        = 1.0
vdw-type        = cut-off
rvdw            = 1.0
tcoupl          = V-rescale
tc-grps         = protein non-protein
tau-t           = 0.1 0.1
ref-t           = 298 298
Pcoupl          = Berendsen
tau-p           = 1.0
compressibility = 1e-5
ref-p           = 1.0
nstenergy       = 100
define          = -DPOSRES
constraints     = all-bonds
----------------------------

For a small protein like Lysozyme it should be more than enough with 100 ps 
(50,000 steps) for the water to fully equilibrate around it, but in a large 
membrane system the slow lipid motions can require several nanoseconds of 
re- laxation. The only way to know for certain is to watch the potential energy, 
and extend the equilibration until it has converged. To run this equilibration in 
GROMACS you execute

grompp –f pr.mdp –p topol.top –c em.gro –o pr.tpr mdrun –v –deffnm pr

Running the production simulation
The difference between equilibration and production run is minimal: the 
position restraints and pressure coupling are turned off, we decide how often to 
write output coordinates to analyze (say, every 100 steps), and start a 
significantly longer simulation. How long depends on what you are studying, 



and that should be decided before starting any simulations! For decent 
sampling the simulation should be at least 10 times longer than the 
phenomena you are studying, which unfortunately sometimes conflicts with 
reality and available computer resources. Start a simulation with a couple of 
thousand steps just to see what happens, but don’t wait for it to finish. Instead, 
get the provided trajectory run.xtc, which contains output data from a 10 ns 
simulation of this system.

------run.mdp------
ntegrator      = md
nsteps          = 5000
dt              = 0.002
nstlist         = 10
rlist           = 1.0
coulombtype     = pme
rcoulomb        = 1.0
vdw-type        = cut-off
rvdw            = 1.0
tcoupl          = V-rescale
tc-grps         = protein non-protein
tau-t           = 0.1 0.1
ref-t           = 298 298
nstxtcout       = 1000
nstenergy       = 1000
------------------

We  store (compressed) coordinates every 1,000 steps to the xtc file. Perform 
the production run as

grompp –f run.mdp –p topol.top –c pr.gro –o run.tpr
<MPI run command and options> mdrun –v –deffnm run

To run with the new non-bonded interaction scheme and to be able to use the 
OpenMP parallelization (and to be able to use GPUs), we need to switch from 
the default “group” cut-off scheme to the new “Verlet” scheme. To do this we 
have to add an option to the mdp file. Copy run.mdp to verlet.mdp and add the 
cut-off scheme option.

------verlet.mdp------
... all options from run.mdp ...
cutoff-scheme  = Verlet
------------------

Then run the simulation. Compare different parallel settings to see how the 
performance is affected by the level and type of parallelization. The possible 
options will be explained during the tutorial.

grompp –f verlet.mdp –p topol.top –c pr.gro –o verlet.tpr
<MPI run command and options> mdrun –v –deffnm verlet
At the end of the log file you can find the performance in nanoseconds per day. 



Above that there are the timings for the most time consuming parts of the 
calculation. Here you can find out what is limiting the scaling of your 
simulations and, when you know something about the algoritms, judge how to 
adjust settings and how many cores you can use. Warnings and notes will be 
printed here when there is a large load imbalance in the particle-particle (PP) 
interaction calculation or between the PP and PME nodes.

Analysis of the simulation
You will likely not have time to perform all these analyses, but pick one or a 
couple of them that sound interesting! At least for the longer ones you will get 
better results if you use the long trajectory from the web site, and there you 
can also find some plots that illustrate the results if you don’t have time to 
perform the analysis yourself.

Deviation from X-ray structure
One of the most important fundamental properties to analyze is whether the 
protein is stable and close to the ex- perimental structure. The standard way to 
measure this is the root-mean-square displacement (RMSD) of all heavy atoms 
with respect to the X-ray structure. GROMACS has a finished program to do 
this, as

g_rms –s em.tpr –f run.xtc

Note that the reference structure here is taken from the input before energy 
minimization. The program will prompt both for a fit group, and the group to 
calculate RMSD for – choose “Protein-H” (protein except hydrogens) for both. 
The output will be written to rmsd.xvg, and if you installed the Grace program 
you will directly get a finished graph with

xmgrace rmsd.xvg

The RMSD increases pretty rapidly in the first part of the simulation, but 
stabilizes around 0.l9 nm, roughly the resolution of the X-ray structure. The 
difference is partly caused by limitations in the force field, but also because 
atoms in the simulation are moving and vibrating around an equilibrium 
structure. A better measure can be obtained by first creating a running average 
structure from the simulation and comparing the running average to the X-ray 
structure, which would give a more realistic RMSD around 0.16 nm.

Comparing fluctuations with temperature factors

Vibrations around the equilibrium are not random, but depend on local 
structure flexibility. The root-mean-square- fluctuation (RMSF) of each residue is 
straightforward to calculate over the trajectory, but more important they can 
be converted to temperature factors that are also present for each atom in a 
PDB file. Once again there is a program that will do the entire job:

g_rmsf –s run.tpr –f run.xtc –o rmsf.xvg –oq bfac.pdb

You can use the group “C-alpha” to get one value per residue. The overall 
agreement should be quite good (check the temperature factor field in this and 



the input PDB file, or cheat and open the file rmsf.pdf ), which lends further 
credibility to the accuracy and stability of the simulation.

Secondary structure (Requires DSSP)

Another measure of stability is the protein secondary structure. This can be 
calculated for each frame with a pro- gram such as DSSP. If the DSSP program 
is installed and the environment variable DSSP points to the binary (do_dssp -h 
will give you help on that), the GROMACS program do_dssp can create time-
resolved secondary struc- ture plots. Since the program writes output in a 
special xpm (X pixmap) format you probably also need the GROMACS program 
xpm2ps to convert it to postscript:

do_dssp –s run.tpr –f run.xtc

xpm2ps –f ss.xpm –o ss.eps

Use the group “protein” for the calculation. The DSSP secondary structure 
definition is pretty tight, so it is quite normal for residues to fluctuate around 
the well-defined state, in particular at the ends of helices or sheets. For a
(long) protein folding simulation, a DSSP plot would show how the secondary 
structures form during the simula- tion. If you do not have DSSP installed, you 
can compile the Gromacs built-in replacement “my_dssp” from the src/contrib 
directory.

Distance and hydrogen bonds

With basic properties accurately reproduced, we can use the simulation to 
analyze more specific details. As an exam- ple, Lysozyme appears to be 
stabilized by hydrogen bonds between the residues GLU22 and ARG137, so 
how much does this fluctuate in the simulation, and are the hydrogen bonds 
intact? To determine this, first create an index file with these groups as

make_ndx –f run.gro

At the prompt, create a group for GLU22 with “r 22”, ARG137 with “r 137”, and 
then “q” to save an index file as index.ndx. The distance and number of 
hydrogen bonds can now be calculated with the commands

g_dist –s run.tpr –f run.xtc –n index.ndx –o dist.xvg

g_hbond –s run.tpr –f run.xtc –n index.ndx –num hbnum.xvg

In both cases you should select the two groups you just created. Two hydrogen 
bonds should be present almost throughout the simulation.

Making a movie

A normal movie uses roughly 30 frames/second, so a 10-second movie requires 
300 simulation trajectory frames. To make a smooth movie the frames should 
not be more 1-2 ps apart, or it will just appear to shake nervously. Export a 



short trajectory from the first 2.5 ns in PDB format (readable by PyMOL) as

trjconv –s run.gro –f run.xtc –e 2500.0 –o movie.pdb

Choose the protein group for output rather than the entire system. If you open 
this trajectory in PyMOL you can immediately play it using the VCR-style 
controls on the bottom right, adjust visual settings in the menus, and even use 
photorealistic ray-tracing for all images in the movie. With MacPyMOL you can 
directly save the movie as a quicktime file, and on Linux you can save it as a 
sequence of PNG images for assembly in another program. Render- ing a movie 
only takes a few minutes, and the final product lysozyme.mov is also available 
in the same location you found the other files.

Conclusions
Well, the main point of this exercise was to get your feet wet, and at least an 
idea of how to use Gromacs in practice. There are much more advanced 
analysis tools available, not to mention a wealth of simulation options. We’ll go 
through some of those during the rest of the workshop, but we’d also like to 
recommend the Gromacs manual which is available from our website: It goes 
quite a bit beyond just being a program manual, and explains many of the 
algorithms and equations in detail!
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