
Chapter 22

The role of the N-representability in one-particle

functional theories

M. Piris

22.1 Introduction

The purpose of this chapter is to analyze the role of the N-representability in one-
particle functional theories, that is, in theories where the ground-state energy is rep-
resented in terms of the first-order reduced density matrix (1RDM) Γ or simply its
diagonal part: the density ρ . I have chosen to write on this topic to honor Norman H.
March since he has always been interested on the subject. Throughout these years
during his visits to the Donostia International Physics Center, Professor March has
encouraged me to emphasize the importance of the functional N-representability,
an issue that has not received enough attention in the literature. This has led us to
recently write several articles together [1, 2, 3, 4, 5] using what is so far the only
known natural orbital functional, namely PNOF5 [6, 7], which even including the
electronic correlation, maintains a one-to-one correspondence with the energy ob-
tained from an N-particle wavefunction [8, 9].

The term N-representability was coined by John Coleman in 1963 [10]. Already
in the 1940s [11] it was known that for an N-particle quantum system with a Hamil-
tonian involving not more than two-body interactions, the energy is an exact func-
tional E [D] of the second-order reduced density matrix (2RDM) D. Therefore, it
was frequently pointed out that the N-particle wavefunction tells us more than we
need to know and its role can be assumed by the 2RDM in the discussion of physical
systems. Coleman attempted this in 1951 [12] and realized that it is necessary to im-
pose some limitations on the allowed two-matrices, in addition to general properties,
to ensure a physical value of ground-state energy. The needed conditions [10] were
that the two-matrix be derived from an N-particle wavefunction that is symmetric or
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antisymmetric with respect to the interchange of similar bosons or fermions, respec-
tively. From that moment on, the search for the necessary and sufficient conditions
for ensuring that D corresponds to an N-particle wavefunction became known as the
N-representability problem of the 2RDM. In what follows, I will limit our attention
to the case of electrons.

Many necessary conditions on the N-representability of the 2RDM were obtained
in the last half-century [13], and in principle the problem was formally solved [14].
Recently, the so called (2,q)-positivity conditions have been proposed by Mazziotti
[15], where the number q corresponds to the higher qRDM that serves as the start-
ing point for the derivation of the condition. The (2,2)- and (2,3)-positivity condi-
tions correspond to the already known D, Q, G, T 1, and T 2 conditions [10, 16, 17],
whereas when q = r, being r the rank of the one-electron basis set, the positivity
conditions are complete. Unfortunately, a complete set of N-representability con-
ditions that do not depend on higher-order RDMs remains unknown, so a tractable
solution to the N-representability problem of the 2RDM has been not found.

On the contrary, the necessary and sufficient conditions that guarantee the en-
semble N-representability of Γ and ρ are well established and are very easy to im-
plement [10, 18, 19], hence an alternative would be to develop a functional theory
based on them. Like D, Γ and ρ are simpler objects than the N-particle wavefunc-
tion and further reduce the number of coordinates on which the fundamental vari-
able depends, namely, only six or three coordinates, respectively. Hence one-particle
theories are very attractive, but can we achieve exact functionals of Γ and ρ?

Starting with the Thomas-Fermi theory [20, 21], extended later by Dirac [22], the
beginnings of one-particle theories go back to the time of the appearance of quan-
tum mechanics. Important developments were made in the Thomas-Fermi theory,
including those of Professor March [23], until it reached the status of density func-
tional theory (DFT) in 1964 [24]. That year, Hohenberg and Kohn (HK) showed
that the ground-state electron density for some external potential determines ev-
ery property of an electronic system. An extension of the original HK theorem that
eliminates the v-representability requirement on ρ was later given by Levy [25], and
extensively mathematically treated by Lieb [26].

A decade after the appearance of the HK theorem, Gilbert [18] proved its ana-
log for Γ. This work together with those of Donnelly and Parr [27], Levy [25] and
Valone [28] laid the groundwork for the 1RDM functional theory (1RDMFT). How-
ever, the computational schemes based on these formulations of DFT and 1RDMFT
are several times more expensive than solving directly the Schrödinger equation.
Accordingly, the answer to the previous question about the existence of exact func-
tionals is affirmative, but not in a practical sense because these exact functionals do
not have an appropriate form for computation. Practical applications of one-particle
theories require another approach in the construction of functionals E [Γ] or E [ρ ]
for the ground-state energy.

In 1967 [29], Rosina had already demonstrated that there is a one-to-one mapping
from the 2RDM to the N-particle wavefunction in the case of the ground state of a
Hamiltonian with at most two-body interactions. Taking advantage of the Rosina’s
theorem, Mazziotti defined [30] the universal functionals of Levy [25] and Valone
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[28] restricting the 2RDM to be pure or ensemble N-representable, respectively.
Therefore, the existence theorems of one-particle functionals implicitly establish
a one-to-one correspondence between the ground-state D and ground-state Γ and
ρ , respectively. Consequently, functionals E [Γ] and E [ρ ] must match the above-
mentioned exact functional E [D] as expected.

It is important to note that E [D] reconstructions in DFT require greater effort than
in 1RDMFT, since the non-interacting part of the Hamiltonian is actually a single-
particle operator, so it has an explicit dependence on Γ. The unknown functional in a
Γ-based theory only needs to reconstruct the electron-electron potential energy. This
reflects an undeniable advantage of 1RDMFT with respect to DFT in reconstructing
the exact functional E [D], and it is not surprising that the main source of problems
in DFT is related to the construction of kinetic energy functional.

It is evident that if we have the exact reconstruction of E [D], either in terms of
Γ or ρ , ensuring the N-representability of the fundamental variable will guarantee
the N-representability also of the functional. However, this exact reconstruction has
been an unattainable goal until now, and we have to settle for making approxima-
tions. One possibility may be to employ the exact energy expression E [D] but using
solely a reconstruction functional D [Γ] or D [ρ ] as required. This implies that the
exact ground-state energy will not, in general, be entirely rebuilt.

Approximating the energy functional has important consequences. First, the the-
orems obtained for the exact functionals E [Γ] and E [ρ ] are no longer valid. The
point is that an approximate functional still depends on the 2RDM [31]. This situ-
ation is completely analogous to that arising when approximate wavefunctions are
used instead of the exact wavefunction. An undesired implication of the 2RDM de-
pendence is that the functional N-representability problem arises, that is, we have
to comply the requirement that D reconstructed in terms of Γ or ρ must satisfy the
same N-representability conditions as those imposed on unreconstructed 2RDMs
to ensure a physical value of the approximate ground-state energy. Otherwise, the
functional approximation will not be correct since there will not be an N-electron
system with an energy value E [D]. In summary, we are no longer really dealing with
the 1RDMFT or DFT, but with approximate one-particle theories, where the 2RDM
continues to play the dominant role.

Unfortunately, most of the approximate functionals currently in use are not N-
representable, and that is why energy is often obtained far below true energy. It has
been generally assumed that there is no N-representability problem of the functional,
as it is believed that only N-representable conditions on the 1RDM or density are
sufficient. The ensemble N-representability constraints for acceptable Γ or ρ are
easy to implement, but are insufficient to guarantee that the reconstructed 2RDM is
N-representable, and thereby the approximate functional either. To date, only a few
papers have drawn attention to this problem. Among these exceptions are the work
of Ayers and Liu [32] on N-representability in DFT, and the more recent work by
Ludeña, Torres, and Costa [33] who also deals with N-representability in 1RDMFT.

In case of the density, the construction of approximate functionals through the
reconstruction of the 2RDM has not been the norm. At the moment we only know
some attempts like the one of Colle and Salvetti [34], complemented with the recon-



234 M. Piris

struction of Lee, Yang and Parr [35], but it is not N-representable [36]. A similar sit-
uation is found in case of the 1RDM, where the approximate functionals have been
proposed using heuristic or reasonable physical arguments [37]. Only the PNOFi

(i = 1− 7) [38, 39, 40, 41] family of functionals relies on the reconstruction of the
2RDM subject to necessary N-representability conditions. Remarkable is the case
of PNOF5 [6, 7] which turned out to be strictly pure N-representable [8, 9].

Apart from the special case of the Hartree-Fock (HF) approximation that may be
viewed as the simplest approximate Γ−functional, none of the known approximate
functionals are explicitly given in terms of the 1RDM, including the familiar func-
tional that accurately describes two-electron closed-shell systems [42, 43]. There are
energy expressions, including those proposed by Muller [44], Csanyi and Arias [45],
Sharma, Dewhurst, Lathiotakis, and Gros [46], that avoid the well-known phase
dilemma [47] of the 1RDMFT, so they seem to depend properly on the 1RDM.
However, these functionals violate the antisymmetric requirement for the 2RDM,
consequently none of these functionals affords an N-representable 2RDM [48], nor
can they reproduce the simplest two-electron case. Extensive N-representability vi-
olations have been recently reported [49] for these functionals. One can obtain quite
reasonable results for some systems using them, but this does not guarantee that
the calculations made are accurate since there is no N-particle density matrix that
support their existence.

The functionals currently in use are constructed in the basis where the 1RDM is
diagonal, which is the definition of a natural orbital functional (NOF). Accordingly,
it is more appropriate to speak of a NOF rather than a functional of the 1RDM due
to the existing dependence on the 2RDM. In this vein, in the NOF theory (NOFT)
[50, 51], the natural orbitals (NOs) are the orbitals that diagonalize the 1RDM cor-
responding to an approximate energy expression, such as those obtained from an
approximate wavefunction. This energy is not invariant with respect to a unitary
transformation of the orbitals, and the resulting functional is only implicitly depen-
dent on Γ or ρ through the contraction relations that determine them from D.

So far only the NOFT has proven to be able to take into account the functional
N-representability in one-particle theories, thereby from now on we focus on it. This
chapter continues with a presentation of the basic concepts and notations relevant to
NOFT (section 22.2). The following section 22.3 is devoted to present our theory.
Here, I discuss in details the reconstruction of the 2RDM that leads to PNOF ap-
proximations. The independent pair model PNOF5, as well as two results obtained
with Professor March using PNOF5, namely, the behavior of the von Weizsäcker
kinetic energy with the increase of N, and the calculation of chemical potential in
neutral atoms, are analyzed in sections 22.4, 22.5 and 22.6, respectively. The chap-
ter is ended with a discussion on the pure-state N-representability , which so far has
been only accomplished for PNOF5 (Section 22.7).
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22.2 Natural Orbital Functional Theory (NOFT)

The density matrix is the suitable mathematical object for describing an N-particle
quantum mechanical system, since it is equally applicable to pure states and statis-
tical ensembles [52]. Thus, consider an N-electron system described by the density
matrix

D=∑
i

ωiΨi

(
x′1, . . . ,x

′
N

)
Ψ∗

i (x1, . . . ,xN) (22.1)

In Eq. (22.1), ωi are positive real numbers with sum one, so that D corresponds to
a sum of pure states with weight ωi. Here and in the following x ≡(r,s) stands for
the combined spatial and spin coordinates, r and s, respectively.

The electronic energy E , in atomic units, for such N-electron system subject to
an external potential v(r) is an exactly and explicitly known functional of Γ and D,
namely,

E =−1
2

∫
∇2

1Γ
(
r′1,r1

)
|r′

1
=r1

dr1

+

∫
Γ(r1,r1)v(r1)dr1 +

∫
D(r1,r2;r1,r2)

|r1 − r2|
dr1dr2 (22.2)

where Γ and D are obtained by contraction of D,

Γ
(
r′1,r1

)
= N ∑

σ1

∫
D
(
r′1σ1...,r1σ1...

)
dx2...dxN (22.3a)

D(r1,r2;r1,r2) =
N (N − 1)

2 ∑
σ1,σ2

∫
D(x1,x2, . . . ,xN;x1,x2, . . . ,xN)dx3. . .dxN .

(22.3b)

In Eqs. (22.3), we employ Löwdin’s normalization convention in which the trace
of the 1RDM equals the number of electrons, and the trace of the 2RDM gives the
number of electron pairs in the system.

The N-electron Hamiltonian does not contain any spin coordinates, hence both
operators Ŝz and Ŝ2 commute with it. Consequently, the eigenfunctions of the Hamil-
tonian are also eigenfunctions of these two spin operators. For Ŝz eigenstates, only
density matrix blocks that conserve the number of each spin type are non-vanishing.
Specifically, the 1RDM has two nonzero blocks Γαα and Γβ β , whereas the 2RDM
has three independent nonzero blocks, Dαα , Dαβ , and Dβ β . The parallel-spin com-
ponents of the two-matrix must be antisymmetric, but Dαβ possess no special sym-
metry [50].

In NOFT, the spectral decomposition of the 1RDM

Γ
(
x′,x

)
= ∑

i

niφi

(
x′
)

φ∗
i (x) (22.4)
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is used to approximate the electronic energy in terms of the NOs and their occupa-
tion numbers (ONs), namely,

E = ∑
i

niHii +∑
i jkl

D[ni,n j,nk,nl ]〈kl|i j〉 (22.5)

Here, Hii denotes the diagonal elements of the core-Hamiltonian, 〈kl|i j〉 are the
matrix elements of the two-particle interaction, and D[ni,n j,nk,nl ] represents the
reconstructed 2RDM from the ONs.

Restriction of the ONs to the range 0 ≤ ni ≤ 1 represents a necessary and suf-
ficient condition for ensemble N-representability of the 1RDM [10] under the nor-
malization condition ∑i ni =N. The NOs {φi (x)} constitute a complete orthonormal
set of single-particle functions,

〈φk|φi〉=
∫

dxφ∗
k (x)φi (x) = δki (22.6)

with an obvious meaning of the Kronecker delta δki.
For simplicity, we will address only singlet states in this chapter. The spin-orbital

set {φi (x)} may be split into two subsets:
{

ϕα
p (r)α (s)

}
and

{
ϕ

β
p (r)β (s)

}
. In or-

der to avoid spin contamination effects, the spin restricted theory will be employed,
in which a single set of orbitals is used for α and β spins: ϕα

p (r) = ϕ
β
p (r) = ϕp (r),

and the parallel spin blocks of the RDMs are equal as well.
It should be noted that the first term of Eq. (22.5) has an explicit dependence

on Γ, in contrast to ρ , so we do not need to reconstruct the non-interacting part
of the electronic energy. In addition, we neglect any explicit dependence of D on
the NOs themselves because the energy functional has already a strong dependence
on the NOs via the one- and two-electron integrals. Consequently, the resulting ap-
proximate functional E [N,{ni,φi}] can solely be implicitly dependent on Γ since
the theorems on the existence of the functional E [Γ] are valid only for the exact
ground-state energy. In this vein, NOs are the orbitals that diagonalize the 1RDM
corresponding to an approximate energy that still depends on the 2RDM ergo the
energy is not invariant with respect to a unitary transformation of the orbitals. If we
remember that D determines Γ, then it becomes clear that the construction of an
N-representable functional given by Eq. (22.5) is related to the N-representability
problem of D[ni,n j,nk,nl ].

22.3 PNOF Theory

A systematic application of the ensemble N-representability conditions in the re-
construction of D[ni,n j,nk,nl ] by means of an explicit approximation [38] of the
two-particle cumulant has led to the series of Piris NOFs. Consider the cumulant
expansion [53] of the 2RDM in the NO representation,
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Dkl,i j =
nin j

2

(
δkiδl j − δliδk j

)
+λkl,i j. (22.7)

Here, the 2RDM has been partitioned into an antisymmetric product of the 1RDMs,
which is simply the HF approximation, and a correction λ to it. The latter is called
the cumulant or correlation matrix. It is worth noting that matrix elements of λ

are non-vanishing only if all its labels refer to partially occupied NOs with ONs
different from 0 or 1.

The cumulant matrix must fulfill as many necessary N-representability condi-
tions as possible to ensure the N-representability of D since requiring all condi-
tions is not practicable due to their dependence on higher-order RDMs. The use
of the (2,2)-positivity N-representability conditions [15] for reconstructing λ was
proposed in reference [38]. This particular reconstruction is based on the introduc-
tion of two auxiliary matrices ∆ and Π expressed in terms of the ONs. In a spin
restricted formulation, the structure of the two-particle cumulant is

λ σσ
pq,rt =−1

2
∆pq (δprδqt − δptδqr) (22.8a)

λ
αβ
pq,rt =−1

2
∆pqδprδqt +

1
2

Πprδpqδrt . (22.8b)

∆ is a real symmetric matrix, whereas Π is a spin-independent Hermitian ma-
trix. The N-representability D and Q conditions of the 2RDM impose the following
inequalities on the off-diagonal elements of ∆ [38],

∆qp ≤ nqnp, ∆qp ≤ hqhp, (22.9)

while to fulfill the G condition, the elements of the Π -matrix must satisfy the con-
straint [54]

Π 2
qp ≤ (nqhp +∆qp)(hqnp +∆qp) , (22.10)

where hp denotes the hole 1−np in the spatial orbital p. Furthermore, the sum rules
that must fulfill the blocks of the cumulant yield a sum rule for ∆,

∑
p,q;p 6=q

∆qp = nphp. (22.11)

Within this reconstruction, the energy for singlet states reads as

E = ∑
p

np (2Hpp +Jpp)+ ∑
p,q;p 6=q

ΠqpLpq + ∑
p,q;p 6=q

(nqnp −∆qp)(2Jpq −Kpq) ,

(22.12)
where Jpq = 〈pq|pq〉 and Kpq = 〈pq|qp〉 are the usual direct and exchange in-
tegrals, respectively. Jpp is the Coulomb interaction between two electrons with
opposite spins at the spatial orbital p, whereas Lpq = 〈pp|qq〉 is the exchange and
time-inversion integral [55], so the functional (22.12) belongs to the J K L -only
family of NOFs.
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The conservation of Ŝ2 allows to derive the diagonal elements ∆pp = n2
p and

Πpp = np [56]. Appropriate forms of matrices ∆ and Π lead to different implemen-
tations of the NOF known in the literature as PNOFi (i = 1−7) [38, 39, 40, 41]. The
performance of these functionals is comparable to those of best quantum chemistry
methods in many cases, being particularly interesting the case of PNOF3 [57] in
relation with the functional N-representability.

PNOF3 showed [57] exceptional performance for atoms and molecules, both
for spin-compensated and spin-non-compensated. This NOF can describe the cor-
rect topology of potential energy surfaces highly sensitive to electron correlation,
giving reaction barriers and isomerization energies with an accuracy of less than
1 kcal/mol [58]. However, a closer analysis of the dissociation curves for various
diatomics [54], as well as the description of diradicals and diradicaloids [59], re-
vealed that PNOF3 overestimates the amount of electron correlation, when orbital
near-degeneracy effects become important.

This is a paradigmatic case of how highly accurate results achieved with a func-
tional can be misleading. The PNOF3 satisfies the D and Q N-representability con-
ditions given by Eq. (22.9), but violates the G condition (22.10). It was demonstrated
[54] that the ill behavior of PNOF3 is related to the violation of the latter conditions.
Only the progressive inclusion of N-representability conditions can lead to recon-
structions with physical meaning since it is the only way to ensure that the energy
corresponds to a density matrix of N electrons. This approach has been called the
bottom-up method [33].

22.4 Independent pair approximation

Let’s divide the orbital space Ω into N/2 mutually disjoint subspaces Ωg, so each
orbital belongs only to one subspace. Consider each subspace contains one orbital g

below the Fermi level (N/2), and Ng orbitals above it, which is reflected in additional
sum rules for the ONs:

∑
p∈Ωg

np = 1; g = 1,2, . . . ,N/2. (22.13)

Taking into account the spin, each subspace contains solely an electron pair, and
the normalization condition for Γ (2∑p np = N) is automatically fulfilled. Coupling
each orbital g below the Fermi level with only one orbital above it (Ng = 1) also
leads to an orbital perfect pairing. It is important to note that orbitals satisfying the
pairing conditions (22.13) are not required to remain fixed throughout the orbital
optimization process [60].

The simplest way to comply with all required constraints leads to an independent
pair model (PNOF5) [6, 7]:
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∆qp = n2
pδqp + nqnp (1− δqp)δqΩg

δpΩg
(22.14a)

Πqp = npδqp +Π g
qp (1− δqp)δqΩg

δpΩg
(22.14b)

Π g
qp =

{
−√

nqnp p = g or q = g

+
√

nqnp p,q > N/2
(22.14c)

δqΩg
=

{
1, q ∈ Ωg

0, q /∈ Ωg

g = 1,2, . . . ,N/2. (22.14d)

Given this functional form of the auxiliary matrices ∆ and Π , the energy (22.12)
of the PNOF5 can be conveniently written as

E =
N/2

∑
g=1

Eg +
N/2

∑
f 6=g

E f g (22.15a)

Eg = ∑
p∈Ωg

np (2Hpp +Jpp)+ ∑
p,q∈Ωg,p 6=q

Π g
qpLpq (22.15b)

E f g = ∑
q∈Ω f

∑
p∈Ωg

nqnp (2Jpq −Kpq) . (22.15c)

The first term of the energy draws the system as N/2 independent electron pairs,
whereas the second term contains the contribution to the HF mean-field of the elec-
trons belonging to different pairs.

Several performance tests have shown that PNOF5 yields remarkably accurate
descriptions of systems with near-degenerate one-particle states and dissociation
processes [61, 62, 63, 4]. In this sense, the results obtained with PNOF5 for the
electronic structure of transition metal complexes are probably the most relevant
[64]. This functional correctly takes into account the multiconfigurational nature
of the ground state of the chromium dimer, known as a benchmark molecule for
quantum chemical methods due to the extremely challenging electronic structure of
the ground state and potential energy curve.

PNOF5 has also been successfully used to predict vertical ionization potentials
and electron affinities of a selected set of organic and inorganic spin-compensated
molecules, by means of the extended Koopmans’ theorem [65]. The improvement
due to the inclusion of more orbitals in the description of each pair was also ob-
served by visualizing the electron densities by means of the Bader’s theory of atoms
in molecules in the case of a set of light atomic clusters: Li2, Li+3 , Li2+4 and H+

3
[7]. The size-consistency property, and the fact that the functional tends to localize
spatially the NOs, make PNOF5 an exceptional candidate for fragment calculations.
The latter showed a fast convergence, which allowed the treatment of extended sys-
tem at a fractional cost of the whole calculation [66].

As mentioned above, NOFs still depend explicitly on the 2RDM, so the energy
is not invariant with respect to a unitary transformation of the orbitals. Because
of this, the NOFT provides two complementary representations of the one-electron
picture, namely, the NO representation and the canonical orbital representation [67].
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The former arises directly from the optimization process solving the corresponding
Euler equations, whereas the latter is attained from the diagonalization of the ma-
trix of Lagrange multipliers obtained in the NO representation. Both set of orbitals
represent unique correlated one-electron pictures of the same energy minimization
problem, ergo, they complement each other in the analysis of the molecular elec-
tronic structure. The orbitals obtained in both representations, using the electron
pairing approaches in NOFT, have shown [68, 69, 63, 70] that the electron pairs
with opposite spins continue to be a suitable language for the chemical bond theory.

In this tribute to Professor March, two results obtained with PNOF5 deserve spe-
cial attention: the behavior of the von Weizsäcker kinetic energy with the increase
of N [1], and the calculation of chemical potential in neutral atoms [2].

22.5 von Weizsäcker kinetic energy term for diatomic molecules

In 1983, Mucci and March reported [71] on the importance of density gradients for
molecular binding in diatomics. The simplest density gradient kinetic energy term
was introduced by von Weizsäcker [72] as follows

Tw =
h̄2

8m

∫ |∇ρ (r)|2
ρ (r)

dr (22.16)

Recently [1], Eq. (22.16) was used to calculate the von Weizsäcker energy for some
30 homonuclear diatomic molecules at their experimental equilibrium geometry em-
ploying densities obtained from PNOF5. We considered only spin singlets for these
molecules, although in some cases their ground state are triplets. In addition, all
calculations were made at the non-relativistic level of theory.

Our results, from H2 to Ge2, reveal [1] a slowly varying character of Tw/N2,
where N is the total number of electrons in the molecule under consideration. For
example, from N2 to Ge2, the variation was from 0.44 to 0.49 atomic units. This
led us to conclude that the Schrödinger’s non-relativistic equation predicts, at the
equilibrium, the following relationship

Tw → 1
2

N2 (22.17)

as N becomes large, say at Cr2 and higher N cases.

22.6 The chemical potential

The solution in PNOF5 theory is established by optimizing the energy functional
(22.15) with respect to the ONs and NOs separately, for which the iterative diagonal-
ization procedure proposed by Piris and Ugalde [60] is employed. The orbitals must
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satisfy the orthonormality requirement, Eq. (22.6), whereas the occupancies have to
conform to the electron pairing constraints (22.13) and ensemble N-representability
conditions for the 1RDM (0 ≤ np ≤ 1). The latter bounds can be easily enforced by
setting np = cos2 γp, and varying {γp} without these constraints. The other condi-
tions may be easily taken into account by the method of Lagrange multipliers.

Let us focus on the minimization of {γp} for a fixed set of NOs. We associate the
Lagrange multipliers {µg} with conditions (22.13), and define the auxiliary func-
tional Ω by the formula

Ω [N,{γp}] = E − 2
N/2

∑
g=1

µg

(

∑
p∈Ωg

cos2 γp − 1

)
(22.18)

The functional (22.18) has to be stationary with respect to variations in {γp},

δΩ =
N/2

∑
g=1

∑
p∈Ωg

sin(2γp)

[
2µg −

∂E

∂np

]
dγp = 0 (22.19)

The partial derivative (∂E/∂np) is taken holding the orbitals fixed. It satisfies the
relation

∂E

∂np

= 2Hpp +
∂Vee

∂np

= 2µg, ∀p ∈ Ωg, (22.20)

where the partial derivative of electron-electron repulsion energy Vee is given by the
expression

∂Vee

∂np

= Jpp + 2 ∑
q∈Ωg,q 6=p

∂Π g
qp

∂np

Lqp + 2
N/2

∑
f 6=g

∑
q∈Ω f

nq (2Jqp −Kqp) , ∀p ∈ Ωg.

(22.21)
Accordingly, the Lagrange multipliers {µg} can be written as

µg = Hpp +
1
2

∂Vee

∂np

, ∀p ∈ Ωg (22.22)

It follows from Eq. (22.22) that we have N/2 Lagrange multipliers which can
be identified as chemical potentials in virtue of the result obtained in [73]. An in-
finitesimal change in the number of electrons is energetically more advantageous
when added to an orbital associated with the smallest µg. Therefore, we identify [2]
the latter with the chemical potential µ of an N-electron open system in a singlet
ground state.

In Ref. [2], calculations of the chemical potential in 36 neutral atoms of the first
three rows of periodic table (H-Kr) were presented and compared and contrasted
with available experimental values. The chemical potential of a single atom in its
multiplet ground state was obtained from the calculation made in the correspond-
ing dimer in a singlet state considering the homonuclear diatomics at infinite sep-
aration (50 Å) between atoms. This is possible because the functional PNOF5 is
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size-extensive and size-consistent [7]. In general, our results showed that the chem-
ical potentials overestimate the experimental values of the ionization (I) although
the expected oscillatory behavior was maintained. There were exceptions where the
value of µ lies quite close to the experimental marks, namely, H, Li, B, C, N, Na,
Al, Si, P, K, Ga, Ge, and As.

In case of noble gas atoms, the chemical potential doubled approximately the
value of −I. It is known [73] that µ presents a discontinuity at integer particle num-
ber equals to the fundamental gap, i.e., the difference between the electron affinity
and the ionization potential for a given number of electrons. In closed-shell systems,
like noble gas atoms, no energy is given off when a neutral atom of these elements
picks up an electron, hence, there is no electron affinity, or these atoms have electron
affinities with opposite sign. Our estimation of the chemical potentials reflected this
situation by increasing the expected value referred to the ionization potential.

22.7 Pure N-representability

So far in this work, we have focused on the N-representability problem for statis-
tical ensembles. The fact that Coleman obtained [10] the restrictions on the ONs
(0 ≤ ni ≤ 1, ∑i ni = N), also known as Pauli constraints, so that the 1RDM is rep-
resentable by at least one N-electron density matrix, prompted the search for sim-
ilar conditions on the pure-state N-representability. In 1972, Borland and Dennis
showed [74] computationally that additional constraints on Γ are necessary for it
to be representable by at least one pure N-electron density matrix. It was not until
very recently that these conditions named generalized Pauli constraints (GPCs) have
been obtained [75, 76], taking the form

κ0 j +
r

∑
i=1

κi jni ≥ 0, j = 1,2, ... < ∞, (22.23)

where
{

κi j

}
are integer constants, r is the rank of the orbital space Ω , and the ONs

are decreasingly ordered. The Pauli conditions define the set E(N,r) of ensemble
N-representable 1RDMs, whereas the inequalities (22.23) in combination with the
formers define the set P(N,r) of pure N-representable 1RDMs. Spectra {ni} lying
outside of the pure set can only correspond to a mixed state.

A relevant result on the necessity of using the pure-state N-representability con-
ditions in the minimization of the exact functional E [Γ], was obtained by Nguyen-
Dang, Ludeña and Tal [77]. They demonstrated that if we define an universal energy
functional in the domain E(N,r) then it will be exactly equal to the universal energy
functional defined in the domain P(N,r) over this last set, that is, over the set of
pure-state N-representable 1RDMs. This equality justified the use of the ensemble
N-representability necessary and sufficient conditions on Γ, but it required an ade-
quate construction of the functional which would guarantee that Γ ∈P(N,r), as they
showed. In fact, they corroborated Valone’s thesis [28] that in order to guarantee the
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pure-state N-representability conditions in the minimization of the energy only the
ensemble constraints are necessary if the functional is an appropriate one. But what
will happen if the functional is approximate?

If the approximate NOF is strictly pure-state N-representable, i.e., it is obtained
from the reconstruction of a strictly pure-state N-representable 2RDM, then the
1RDM that D determines by contraction will also be automatically pure-state N-
representable. Therefore, for approximate functionals it is also valid to take into
account solely the ensemble constraints in the minimization with respect to Γ if the
functional is an appropriate one. A palpable example is PNOF5.

Two years after PNOF5 was proposed using the bottom-up method (vide supra
Sec. 22.4), the natural geminals of PNOF5 were analyzed [78] and it was realized
by Pernal [8] that this NOF corresponds to the energy obtained from a wavefunction
of an antisymmetrized product of strongly orthogonal geminals if the expansion of
the N/2 geminals is limited to two-dimensional subspaces with fixed signs for the
expansion coefficients of the corresponding geminals. Shortly after this ansatz was
extended to include more orbitals in the description of the electron pairs [7]. This
finding demonstrated that PNOF5 is strictly a pure-state N-representable functional.

Looking more closely at the Eq. (22.13), we realize that the pairing conditions
meet the requirements to be GPCs (22.23). Indeed, the equality conditions obtained
[79] for 3 electrons in a space of 6 natural spin-orbitals are exactly the perfect-
pairing conditions proposed in Ref. [6] to satisfy the sum rules (22.11) for ∆ -matrix,
i.e., for the two-electron cumulant in PNOF5. It is important to note that the suc-
cess of PNOF5 relies on the use of GPCs in the formulation of the reconstruction
D[ni,n j,nk,nl ], and not in its later use to limit the domain of the trial one-matrices.

GPCs have recently [80] received increased attention in NOFT following the dis-
covery of a systematic way to derive them for any number of electrons and any finite
dimensionality of the Hilbert space. Unfortunately, it has been found that the number
of conditions increases dramatically with the number of NOs, so it can be quite diffi-
cult to handle them in practical implementations. On the other hand, the verification
of the fulfillment of these conditions for some current non-N-representable approx-
imations in 3-electron systems showed [80] that, in all cases, some of the pure-state
conditions were violated. The enforcement of additional GPCs in the minimization
led to an improvement of the total energy and of the optimal 1RDM with respect to
those obtained by imposing only the Pauli constraints.

There is no doubt that the application of GPCs restricts the 1RDM variational
space leading to improvements in energy and Γ, but it does not improve the recon-
struction of the approximate functional per se. A 1RDM that represents a pure state
does not guarantee that the reconstructed electron-electron potential energy will be
pure-state N-representable, except that the reconstruction is the exact one, some-
thing that until now has not been possible to reach. The functional N-representability
problem continues to exist for pure states when we make approximations for the
functional, and it is still related to the N-representability, in this case for pure states,
of the 2RDM.
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22.8 Closing remarks

In this chapter, the N-representability problem in one-particle functional theories
has been analyzed. It turns out that here this problem is twofold. First, we have the
N-representability problem of the fundamental variable, Γ or ρ , as the case may
be. Fortunately, the necessary and sufficient conditions that guarantee the ensemble
N-representability of Γ and ρ are well established and are very easy to implement,
which makes one-particle theories extremely attractive. The other side however is
trickier.

On the one hand we have that for the exact functional of the density or 1RDM,
it suffices to require the N-representability of the fundamental variable to guarantee
that the ground-state energy corresponds to an N-electron density matrix. However,
exact formulations of DFT and 1RDMFT do not have an appropriate form for com-
putation and we have to settle for making approximations, which imply that the
theorems obtained for the exact functionals E [Γ] and E [ρ ] are no longer valid.

The main approach route is to use the well-known exact energy expression E [D]
with a reconstruction D [Γ] or D [ρ ] as required. Such an approximate functional still
depends on the 2RDM. An eventual outcome of this D-dependence is the functional
N-representability problem, that is, for a 2RDM reconstructed in terms of Γ or ρ we
have to impose the same N-representability conditions that we enforce on unrecon-
structed 2RDMs to ensure a physical value of the approximate ground-state energy.
This is the only way of assurance that there is an N-electron system with an energy
value E [D]. We are no longer really dealing with the 1RDMFT or DFT, but with
approximate one-particle theories, where the 2RDM continues to play the dominant
role.

Most of the approximate functionals currently in use are not N-representable
hence this second side of the N-representability in one-particle functional theories
has not received sufficient attention. Breaking the particle number symmetry can
sometimes give qualitative descriptions of the phenomena at cost of the good quan-
tum number N. These types of methods are well known in physics but a projection
is always imposed to the correct N-conserving quantum state.

So far only the NOF theory, where functionals are constructed in the basis where
the 1RDM is diagonal, has proven to be able to take into account the functional N-
representability in one-particle theories. In particular, the PNOF family of function-
als relies on the reconstruction of the 2RDM subject to necessary N-representability
conditions. Remarkable is the case of PNOF5 which turned out to be strictly pure
N-representable since it maintains a one-to-one correspondence with the energy ob-
tained from an N-particle wavefunction.

The most direct method to generate a pure-state N-representable NOF is by re-
ducing the energy expression obtained from an approximate N-particle wavefunc-
tion to a functional of the occupation numbers and natural orbitals. By doing this,
we automatically avoid the N-representability problem of the 2RDM, or what is the
same, of the functional. However, this is a formidable task that is far from being
something attainable in most cases. Only PNOF5 has achieved this goal including
the electron correlation.
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The success of PNOF5 relies on the use of additional pairing conditions in the
reconstruction of the 2RDM, which can be seen as generalized Pauli constraints.
The use of these conditions when reconstructing the 2RDM will give rise to N-
representable functionals that will go beyond the independent pair model.

Finally, if the approximate NOF is strictly pure-state N-representable, i.e., it is
obtained from the reconstruction of a strictly pure-state N-representable 2RDM,
then the 1RDM will also be automatically pure-state N-representable. Therefore,
for approximate functionals it is valid to take into account solely the ensemble con-
straints in the minimization with respect to the 1RDM if a pure-state N-representable
functional is employed.
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