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Introduction



Born-Oppenheimer approximation
• Let us consider a crystalline solid with N electrons et NN nuclei, 

the system will be completely quantum-mechanically described 
by its wavefunction Ψ: 

where ri (i = 1, ..., Ne ) and Rα (α = 1, ..., NN ) are the coordinates of the 
electrons and of the nuclei, respectively. 

• As the nuclei are much heavier (hence slower) than the electrons 
(Mα >> 1), their respective dynamics can be decoupled. Hence, the 
wavefunction of the system can be broken into its electronic and nuclear 
components:  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• In practice, it is thus assumed that the nuclei positions can be considered 
as fixed when studying the electrons dynamics. 

• In the end, we have to consider a system of N interacting electrons in an 
external potential Vext(r), such as the one generated by the nuclei. 

• It is completely described by its wavefunction: 
 
which is obtained by solving the Schrödinger equation:

Electronic N-body problem
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Variational Quantum Monte Carlo
• Basically, it is impossible to solve this Schrödinger equation for more 

than two electrons analytically. 
• A first class of numerical methods relies on the variational principle for 

the ground-state energy of the electronic system: 

• Namely, for any arbitrary function ϕ, called trial-wavefunction, its 
expectation value E ϕ , which is defined as:  

is such that E ϕ ≥ E  and it    reaches its minimum when:                  
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Variational Quantum Monte Carlo
• This variational principle can be exploited to approach the ground-state 

energy as much as possible. 

• A trial-wavefunction ϕ(a) depending on one or more parameters is 
chosen. The different many-dimensional integrals are evaluated 
numerically (Monte Carlo methods) so as to obtain: 
 
  

• The minimum is then located by varying the parameter(s): 
 

• The choice of the trial-wavefunction is obviously very critical.
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Variational Quantum Monte Carlo
• Moreover, the N-electrons wavefunction soon becomes an object very 

difficult to handle in a computer. 

• For instance, the wavefunction of the oxygen atom (with 8 electrons) 
defined on a 10×10×10 real space-grid is an 
object which consists of 
1024 real numbers. 

Note: in classical mechanics, 
the very same system is 
fully described by 48 real 
numbers (the positions  
and the velocities of the  
8 electrons).



One-particle approximations



• In fact, electron-electron interactions are the real problem. 
 
 

• Assuming that these are negligible with respect to the external potential 
(the electron-ion interactions), the problem simplifies to:

Independent electron approximation
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• The form of the Hamiltonian calls for a separation of variables. 
The N-electrons wavefunction can be replaced by the product of 
N 1-electron wavefunctions: 
 
 

which are the solutions of a 1-electron Schrödinger equation: 
 
 

• The total energy is simply given by:

Separating the variables

y(r1,r2, . . . ,rN) = f1(r1)f2(r2) · · ·fN(rN)

⋮

E

ε1 , ε2
ε3 , ε4

εN-1 , εN
εN-3 , εN-2εN-5 , εN-4

εN+1 , εN+2
εN+3 , εN+4

EN,0 = ε1 + ε2 + … + εN-1 + εN
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• By solving the 1-electron Schrödinger equation: 
 
 
 
we obtain the band structure εn which can be determined experimentally 
by photoemission or inverse photoemission (valence or conduction bands).

Connection to photoemission

⋮

E

hν 
⋮

Energy conservation: 
   before  → hν + EN,0 

   after     → Ekin + EN-1,n 

The binding energy is: 
   Ekin − hν = EN,0 − EN-1,n  = εn 

    EN-1,n = ε1 +…+ εn + … + εN

Ekin 

N→N-1

εn
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• By solving the 1-electron Schrödinger equation: 
 
 
 
we obtain the band structure εn which can be determined experimentally 
by photoemission or inverse photoemission (valence or conduction bands).

Connection to inverse photoemission

⋮

E
hν 

⋮

Energy conservation: 
   before  → Ekin + EN,0 

   after     → hν + EN+1,n 

The binding energy is: 
   Ekin − hν = EN+1,n − EN,0 = εn 

    EN+1,n = ε1 + … + εN + εn

Ekin 

N→N+1

εn
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Wavefunction methods



• The Hartree approximation assumes that the N-electrons wavefunction 
can be replaced by the product of N 1-electron wavefunctions even when 
the electron-electron interactions are not neglected. 

• Hence, we need to find the 1-electron wavefunctions ϕi that minimize 
the total energy: 
 
under the normalization constraint: 

• Introducing Lagrange multipliers, we simply need to minimize a 
functional of the 1-electron wavefunctions:

Hartree approximation
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• It can be shown that the 1-electron wavefunctions are the solutions of 
the following 1-electron Schrödinger equation: 
 
 
 
where       is the Coulomb operator defined by:

Hartree approximation
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• The electronic eigenenergies can be written as: 
 
 
 
where  
 

• So that the total electronic energy writes:

Hartree approximation
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• The 1-electron Schrödinger equation: 
 
 
 
where 
 
is almost identical (apart from the self-interaction) to: 
 
 
with VH (r), the Hartree potentiel, defined by: 
 
 
where                               is the electronic density.

Hartree approximation
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• In this case, the total electronic energy is written as: 
 
 
where EH is the Hartree energy, defined by:

Hartree approximation
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• However, there is a new difficulty: 
– to obtain the Hartree potential VH (r), the electronic density n(r) and 

hence all the wavefunctions ϕi (r) are needed 
– to obtain the wavefunctions ϕi (r), the Hartree potential VH (r) is 

required 

• In practice, one starts from a trial electronic density and then iterates the 
equations until self-consistency is reached:

Hartree approximation
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Hartree-Fock approximation
• In order to take Pauli exclusion principle into account, the product of N 

1-electron wavefunctions should be replaced by 
a Slater determinant: 
 
 
 
 
 
That is the Hartree-Fock approximation.  

• Again, we simply need to minimize a functional of the 1-electron 
wavefunctions with Lagrange multipliers:
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• It can be shown that the 1-electron wavefunctions are the solutions of 
the following 1-electron Schrödinger equation: 
 
 
 
where      is the Coulomb operator defined by: 
 
 
 
and       is the exchange operator defined by: 

Hartree-Fock approximation
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• The electronic eigenenergies can be written as: 
 
 
where 
 
 
and  
 

• So that the total electronic energy is:

Hartree-Fock approximation
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• The 1-electron Schrödinger equation: 
 
 
 
is identical (here, the self-interaction cancel in J and K ) to: 
 
 
 
with     , the exchange potential operator, defined by: 
 
 
 
It is a non-local operator.

Hartree-Fock approximation
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• A link with photoemission experiments can be established if we assume 
that the wavefunction of the N-1 electrons system can be written as: 
 
 
 
 
 
 
 
 
(meaning that we neglect the relaxation of the 1-electron wavefunctions 
on electron removal). 

• Indeed, we can write:

Hartree-Fock approximation
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• A link with inverse photoemission experiments can be established if we 
assume that the wavefunction of the N+1 electrons system can be written as: 
 
 
 
 
 
 
(meaning that we neglect the relaxation of the 1-electron wavefunctions 
on electron addition). 

• Indeed, we can write:
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Hartree-Fock approximation
• Results for the ionization energy

[courtesy of Fabien Bruneval (CEA-DEN, Gif-sur-Yvette, France)] 

. .Band structure & calculations

Hartree-Fock results

Atoms
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Hartree-Fock approximation
• Band gap of semiconductors and insulators

. .Band structure & calculations

Hartree-Fock results

Band gap of semiconductors and insulators

courtesy of Brice Arnaud, Université de Rennes, France
GW approximation Fabien Bruneval
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• Configuration Interaction (CI): the N-electrons wavefunction is 
approximated by a linear combination of Slater determinants (including 
1-electron wavefunctions associated to excited states). 

• Coupled Cluster (CC): the N-electrons wavefunction is obtained by 
applying an exponential of the excitation operator on the Slater determinant 
(hence producing a linear combination of excited Slater determinants). 

• Møller-Plasset (MP): the N-electrons wavefunction is obtained by 
means of perturbation theory in terms of the correlation potential (i.e. 
the difference between the exact Hamiltonian and the one of Hartree-
Fock approximation). The correlation potential does not contribute in 
first-order to the exact electronic energy. The higher-order terms are 
written on basis of doubly-excited Slater determinants 
(singly-excited do not contribute).

Post-Hartree-Fock methods



Density Functional Theory



Hohenberg-Kohn theorem
• Let us consider all possible Schrödinger equation for Ne electrons which 

only differ by the external potential Vext (r): 
 
 
 
Hohenberg and Kohn have demonstrated that the electronic density of 
the ground-state n(r) defined by: 
 
 
determines uniquely the external potential Vext (r), modulo a global 
constant.
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Hohenberg-Kohn theorem
• Lemma: Let us consider two local potentials V1(r) and V2(r). Their 

ground-state wavefunctions may or may not be degenerate, but one 
wavefunction ψ cannot be common to both, except if the potentials differ 
only by a shift, or are identical everywhere (except at points of zero 
density - these points forming a set of measure zero). 

• Indeed, the difference between the corresponding Schrödinger equations 
would imply that 
 
 
 
for each many-dimensional point (i.e. each configuration of electrons).  
Fixing the positions corresponding to the indices from 2 to N,  
one obtains that the difference between V1(r1) and V2(r1) must be a 
constant in space.
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⇧

+ �E
I
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Hohenberg-Kohn theorem

• Let ψ1(r) the (or one of the) ground-state wavefunction(s) of ĤV1, 
 with associated charge density n1(r) and energy E1=〈 ψ1│ĤV1│ψ1⟩ 
 ψ2(r) the (or one of the) ground-state wavefunction(s) of ĤV2, 
 with associated charge density n2(r) and energy E2=〈 ψ2│ĤV2│ψ2⟩. 

• Due to the variational principle, E1=〈 ψ1│ĤV1│ψ1⟩<〈 ψ2│ĤV1│ψ2⟩  

• Here, a strict inequality holds, because ψ2 cannot be one of the ground-
state wavefunctions of ĤV1 (see previous slide) . The ĤV1 and ĤV2 
Hamiltonians only differ by their one-electron local potential, so that

(
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Hohenberg-Kohn theorem
• Finally, we have that: 
 

• With the same line of thought, interchanging 1 and 2, we get that: 
 

• Summing these two inequalities gives that: 
 

• Postulating n1(r) equal to n2(r) everywhere leads to 0 < 0. 
This is obviously wrong.
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⇧
dr



Hohenberg-Kohn theorem
• So, we have proven that the knowledge of the ground-state density 

defines the external potential up to a constant.  

• The external potential is thus a functional of the ground-state density, as 
well as all the quantities that may be known formally once the potential 
is fixed modulo a global constant (for instance, the wavefunctions of the 
ground-state), hence the name of the theory (acronym: DFT).  

• Moreover, if the arbitrary constant for the external potential is fixed 
through a simple condition (for instance, the potential goes to zero when 
the distance goes to infinity), the total electronic energy is also a 
functional of the density: 
 
Indeed, the Hamiltonian is uniquely defined by specifying the external 
potential, and its expectation value gives the total electronic energy.
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Hohenberg-Kohn theorem
• Starting from the variational principle, it is possible to gain insight 

about this energy functional:

where                                                is a universal functional of the

density, but it is not known explicitly.
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Kohn-Sham equation
• In fact, F [n ] represents an important part of the total electronic energy. 

It is thus critical to make a reasonable approximation for it in order to 
obtain a good value for E [n ] 

• Kohn and Sham tried to establish a connection with a system of non-
interacting electrons with the same electronic density: 
 
 
 

The kinetic energy is a known functional T0 [n ] of the density. 
Moreover, the functional for the associated Hartree energy is also 
known explicitly:
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Kohn-Sham equation
• If this two pieces are substracted from F [n ], the rest represents a much 

smaller part of the total electronic energy. This difference is called 
exchange-correlation energy functional: 
 
 
Indeed, it should contain an exchange term (see Hartree-Fock) and a 
correlation term. But, it also contains the difference between the kinetic 
energies of the systems of interacting and non-interacting electrons. 

• Moreover, it is much easier to obtain a reasonable approximation for it 
(see below). Let us suppose that this functional is known. 

Exc[n] = F[n] � T0[n] � EH[n]



Kohn-Sham equation
• The problem has now turned into minimizing the functional :  
 
 
 
under constraint of a fixed number of electrons:  

• Introducing Lagrange multipliers, one has to solve:
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Kohn-Sham equation
• This equation is strictly equivalent to that of a system of non-interacting 

electrons with the same electronic density in an external potential, 
called Kohn-Sham potential: 
 
 
 
 
where Vxc (r) is the exchange-correlation potential. 

• It is thus also equivalent to solve the 1-electron Schrödinger equation 
self-consistently:

with the electronic density
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Kohn-Sham equation
• By construction, when self-consistency is reached, the electronic density 

and hence the total energy will be the exact ones (assuming the 
exchange-correlation functional to be exact). 

• However, the Kohn-Sham wavefunctions and eigenenergies correspond 
to a fictitious set of independent electrons, so they do not correspond to 
any exact quantity. 

• The solution of the Kohn-Sham self-consistent system of equations is 
equivalent to the minimization of 

under constraints of orthonormalization ⟨ϕi│ϕj ⟩=δij  for the occupied 
orbitals.
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Local Density Approximation
• Let us come back to the problem of finding a reasonable approximation 

for the exchange-correlation energy functional. 

• It is possible to show that this functional of the density can be written as 
the integral over the whole space of the density multiplied by the local 
exchange-correlation energy per electron: 

• The Local Density Approximation (acronym: LDA), due to Kohn and 
Sham, consists in assuming that the local exchange-correlation energy 
per electron only depends on the local density  and that it is equal to that 
of an homogeneous electron gas with the same density (in a neutralizing 
background – the “jellium”):

Exc[n] =
Z

n(r) "xc(r, n)dr

"LDA
xc (r, n) = "hom

xc (n(r))



Local Density Approximation
• The exchange part can be calculated analytically: 
 

• The correlation part is obtained from accurate numerical simulations 
beyond DFT (e.g. Quantum Monte Carlo)

"hom
x (n(r)) = � 3

4⇡

h
3⇡2n(r)

i1/3



Local Density Approximation
• Globally, LDA works very well (hence, it is widely used).  

Example: hafnon (HfSiO4) / zircon (ZrSiO4) 

– body-centered tetragonal 

– primitive cell with 2  
formula units of MSiO4 

– alternating SiO4 tetrahedra 
and MO8 units, sharing 
edges to form chains parallel to [0 0 1] 

– in the MO8 units, four O atoms are closer to the Zr atoms than the 

four other ones 

– O atoms are 3-fold coordinated

(a) (b)



Local Density Approximation
• Globally, LDA works very well (hence, it is widely used).  

Example: hafnon (HfSiO4) / zircon (ZrSiO4) 
 
 
 
 
 
 
 
 
 
Lattice parameters are within 1 or 2% from the experimental values. 



Beyond LDA
• However, in some particular cases (for instance, the hydrogen bond), it 

clearly shows its limits. 

• Considerable efforts are dedicated to improving this approximation. One 
of the tracks that are pursued is to include a dependence on the gradients 
of the local density:  
 
 
This is the generalized gradients approximation 
(acronym: GGA). 

• In this case, there is no model (such as the homogeneous electron gas) 
for which an analytic expression can be obtained.

Eapprox
xc [n] =

Z
n(r) "approx

xc

⇣
n(r), |rn(r)| ,r2n(r)

⌘
dr



Beyond LDA
• There exists a wide variety of GGA functionals which have been 

constructed trying to account for various sum rules  
(acronyms: PBE, PW86, PW91, LYP, ...). 

• Another kind of approximation consists in obtaining a local form for the 
exchange potential by deriving the exchange term that appears in the 
Hartree-Fock approximation. This approach is referred to as exact 
exchange (acronym: EXX). 

• Another approximation consists in suppressing the self-interaction 
which is present in the Hartree term (acronym: SIC). 

• Finally, there are hybrid functionals which are obtained by mixing 
(using an empirically adjusted parameter) a part of exact exchange and 
an approximated part (acronyms: B3LYP, HSE, ...).



Importance of DFT



Importance of DFT
The top 100 papers 
Nature explores the most-cited research of all time. 
R. Van Noorden, B. Maher, & R. Nuzzo 
(29 October 2014) 

 7. Lee, C., Yang, W. & Parr, R. G.  
  Phys. Rev. B 37, 785–789 (1988). 46,702 
 8. Becke, A. D.  
  J. Chem. Phys. 98, 5648–5652 (1993). 46,145 
 16. Perdew, J. P., Burke, K. & Ernzerhof, M. 
  Phys. Rev. Lett. 77, 3865–3868 (1996). 35,405 
 25. Becke, A. D.  
  Phys. Rev. A 38, 3098–3100 (1988). 26,475 
 34. Kohn, W. & Sham, L. J.  
  Phys. Rev. 140, A1133 (1965). 23,059 
 39. Hohenberg, P. & Kohn, W.  
  Phys. Rev. B 136, B864 (1964).  21,931 
 43. Kresse, G. & Furthmüller, J.  
  Phys. Rev. B 54, 11169–11186 (1996). 18,856 
 49. Monkhorst, H. J. & Pack, J. D  
  Phys. Rev. B 13, 5188–5192 (1976). 17,087 
 77. Kresse, G. & Joubert, D. 
  Phys. Rev. B 59, 1758–1775 (1999). 14,049 
 85. Blöchl, P. E 
  Phys. Rev. B 50, 17953–17979 (1994). 13,330 
 89. Kresse, G. & Furthmüller, J. 
  Comput. Mater. Sci. 6, 15–50 (1996). 13,084 
 93. Perdew, J. P. & Wang, Y. 
  Phys. Rev. B 45, 13244–13249 (1992). 12,748 
 96. Vosko, S. H., Wilk, L. & Nusair, M. 
  Can. J. Phys. 58, 1200–1211 (1980). 12,583 



DFT and the band gap problem 
• The Density Functional Theory can (in principle) be used to compute 

exactly all the ground-state properties by solving the Kohn-Sham 
equation: 

As already indicated, there is no direct physical interpretation for the 
Kohn-Sham eigenenergies (these are simply Lagrange multipliers). 

• However, the electronic bandstructures obtained within DFT (LDA or 
GGA) are in quite good agreement with the experimental data. The 
most notable exception is the band gap which is systematically 
underestimated by 30-50% (or even 100%). This problem is related to 
the existence of a discontinuity in the derivative of the exchange-
correlation potential functional.

�
�1

2
⇥2

r + Vext(r) + VH(r) + Vxc(r)
⇥

⇥KS
nk (r) = �KS

nk ⇥KS
nk (r)



DFT and the band gap problem 
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•  In fact, the band gap can also be obtained from total energy differences 
  

• The difference EN+1,0 – EN,0 represents the minimum energy needed to 
add one electron to a system of N electrons. 
It is the electron affinity (EA) : 
 

• The difference EN,0 – EN–1,0 represents the minimum energy needed to 
remove one electron to a system of N electrons.  
It is the ionization energy (IE) :

DFT and the band gap problem 

EA = EN+1,0 �EN,0

IE = EN,0 �EN�1,0



• It can be shown that IE ≤ EA, so that if we define: 
 
 
 
the quantity εg is positive. 

• In an atomic or molecular system, we have: 
 IE (energy of HOMO) < EA (energy of LUMO). 

• In a solid, we define the chemical potential μ such that:  
 
 
In the thermodynamic limit (N, V→∞, with N/V=cst), we distinguish: 
– metallic systems in which εg = 0 (IE≃μ≃EA) 
– insulating systems in which εg > 0 (IE<μ<EA)

DFT and the band gap problem 

IE  µ  EA

eg = EA� IE
= (EN+1,0 �EN,0)� (EN,0 �EN�1,0)



DFT and the band gap problem 
• DFT can be extended to non-integer numbers of electrons by 

considering a zero temperature grand-canonical ensemble. 
• For fractional numbers of electrons N + δ (0 ≤ δ ≤ 1), the exact density 

and exact energy are given by ensemble averages of the integers from 
either side (N and N + 1): 
 
 
 
 
 

• The gap is thus related to the existence of a discontinuity in the 
derivative of the energy (and more precisely the exchange-correlation 
potential functional).

ৎ,ౙ)ট* > )2 ѿ ౙ*ৎ )ট* , ౙৎ,2)ট*
ব,ౙ > )2 ѿ ౙ*ব , ౙব,2

౯ব౯ ѿౙ > *& ౯ব౯ ,ౙ > &"



DFT and the band gap problem 
• The exact DFT energy is discontinuous w.r.t. to the number of electrons

N-1 N N+1

En
er

gy

Number of electrons

Exact

Figure 1: Behaviour of the total energy with respect to the number of electrons. For a fractional

charge system, N + δ, the exact energy is a linear interpolation between the N and N + 1

systems.

of the PPLB result, Eq. (4) [39]. One starts from a pure state of a system and takes the system

to the limit of dissociation into identical subsystems. The subsystems have fractional charges

and the densities are in ensemble form. Since the energy functional should be size-extensive,

this forces the energy functional to be defined for fractional charges. In other words, in order

to satisfy the size extensivity requirement, the exact density functional must be defined for

ensemble densities with fractional charges. Furthermore, as will be shown, the conditions on the

behaviour of the functional for fractional charges are critically important, as their violation is

the cause of major failure of approximate functionals.

In Kohn-Sham theory, fractional charges can be treated in a very simple manner [40]. A ground

state system where the total number of electrons, N , is now allowed to be non-integer, and has

N =
∑

i

ni (5)

with occupation numbers

ni =

⎧

⎪

⎨

⎪

⎩

1, i < imax

δ, i = imax

0, i > imax

(6)

density

ρ(r) =
∑

i

ni|φi(r)|
2 (7)
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• LDA or GGA often give good energies at integer number of electrons 
(esp. for finite systems) but have an incorrect convex behavior for N+ δ

N-1 N N+1

En
er

gy

Number of electrons

Exact
typical LDA/GGA

Figure 2: Energy versus number of electrons for the exact functional and the typical incorrect

convex performance of LDA or GGA.

and corresponding total energy

E[ρ] =
∑

i

ni⟨φi|−
1

2
∇2|φi⟩ +

∫

ρ(r)vext(r)dr + J [ρ] + Exc[ρ]. (8)

The behaviour of approximate exchange-correlation functionals for this extension to fractional

shows up a key failure, as illustrated in Fig. 2. Typical approximations such as LDA or GGA

often give good energies at integer number of electrons (especially for finite systems) but have

an incorrect convex behaviour for systems with fractional charges [41–44]. This is a very basic

error that affects some of the most simple aspects of practical calculations such as densities,

energies and derivatives.

5.2.1 Densities

Consider one of the ways to derive the exact behaviour of the total energy for fractional charges

(e.g. systems with non-integer electron number) using ensembles of stretched molecules [39].

Let us consider the simplest molecule, H+
2 , with two protons A and B and let us analyse three

possibilities (see Fig. 3): first the electron is on proton A, secondly the electron is on proton

B. From the point of view of the density these two look the same and unsurprisingly have the

same energy. Thirdly, a simple linear combination of the two pure states is considered, which

leads to half an electron on each proton. From the point of view of the wavefunction this is a

just a linear combination of two degenerate orthogonal wavefunctions that is also degenerate.
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Density Functional Theory 
with ABINIT



What is ABINIT?
• ABINIT is a package whose main program allows one to find the total 

energy, charge density and electronic structure of systems made of 
electrons and nuclei (molecules and periodic solids) within Density 
Functional Theory (DFT), using pseudopotentials and a plane-wave 
basis-set [...]. 

• ABINIT also includes options to optimize the geometry according to the 
DFT forces and stresses [...]. 

• Excited states can be computed within the Many-Body Perturbation 
Theory (the GW approximation and the 
Bethe-Salpeter equation) [...]. 

• ABINIT is a project that favors development and collaboration.



Describing the structure  
of the system to be investigated



The primitive cell
• A crystal is a solid in which the constituent atoms, molecules, or ions 

are packed in a regularly ordered, repeating pattern (called the primitive 
cell) expending in all three spatial dimensions.

Crystal
Primitive  
unit cell

Lattice



The lattice
• The lattice is defined by its primitive vectors a1, a2, and a3 which are 

independent and such that each point of the lattice can be written as: 
R = l a1 + m a2 + n a3 avec l, m, n ∈ ℤ 
 
 
 
 
 
 
 

• Examples: triclinic (a1≠a2≠a3 and α1≠α2≠α3) 
 cubic (a1=a2=a3 and α1=α2=α3=90º) 

a1

a2

a3

α3

α1

α2

Primitive volume
� = a1 · (a2 � a3)
= a2 · (a3 � a1)
= a3 · (a1 � a2)



The asymmetric unit
• The asymmetric unit is the smallest part of the cell from which it is 

possible to built completely the primitive cell applying the symmetry 
operations of the system (space group).

Asymmetric 
unit

CrystalPrimitive  
unit cell

LatticeSymmetry



The primitive vectors in ABINIT
• ai(j) → rprimd(j,i)=scalecart(j)×rprim(j,i)×acell(i) 
 
 
 
 
 
 

• ai → acell(i) / αi → angdeg(i)

 scalecart    9.5000000000E+00  9.8000000000E+00  1.0000000000E+01
     rprim    0.0000000000E+00  5.0000000000E-01  5.0000000000E-01
              5.0000000000E-01  0.0000000000E+00  5.0000000000E-01
              5.0000000000E-01  5.0000000000E-01  0.0000000000E+00

face-centered 
orthorhombic

     acell    9.5000000000E+00  9.5000000000E+00  1.0000000000E+01
     rprim    0.8660254038E+00  5.0000000000E-01  0.0000000000E+00
             -0.8660254038E+00  5.0000000000E-01  0.0000000000E+00 
              0.0000000000E+00  0.0000000000E+00  1.0000000000E+00

hexagonal

     acell    9.5000000000E+00  9.5000000000E+00  1.0000000000E+01
    angdeg    120 90 90

     acell    9.0000000000E+00  9.0000000000E+00  9.0000000000E+00
    angdeg    48 48 48

trigonal



• We adopt the Seitz notation for the symmetry operations 
of the crystal:  
 
 
 
 
 

• Applied to the equilibrium position vector of atom κ relative to the 
origin of the cell τκ, this symmetry transforms it as: 
 
 
 

where Ra is a translation vector of the crystal.

The symmetries in ABINIT

3×3 real 
orthogonal 

matrix
vector

| {z }| {z }
rotation translation

smaller than any 
primitive vector 

of the crystal

symrel tnons

{S | v(S)}tk = Stk +v(S) = tk 0 +Ra

�
Sab | va(S)

 
tka = Sab tka + va(S) = tk 0a +Ra

a

{S | v(S)}
�

Sab | va(S)
 



The atomic positions in ABINIT
• number of atoms → natom 

• reduced coordinates → xred 

• cartesian coordinates → xcart (in Bohr) / xangst (in Å) 

• type of atoms → typat 

• space group → spgroup + natrd 

• number of symmetries → nsym 

• symmetry operations → symrel + tnons



Example 1: c-ZrO2

• with WPASSIGN on the Bilbao Crystrallographic Server:

http://www.cryst.ehu.es



• with ABINIT (input file):

Example 1: c-ZrO2

     natom         3
     acell    5.0100000000E+00  5.0100000000E+00  5.0100000000E+00 ANGST
     rprim    0.0000000000E+00  5.0000000000E-01  5.0000000000E-01
              5.0000000000E-01  0.0000000000E+00  5.0000000000E-01
              5.0000000000E-01  5.0000000000E-01  0.0000000000E+00
     typat    1  2  2
      xred    0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
              2.5000000000E-01  2.5000000000E-01  2.5000000000E-01
             -2.5000000000E-01 -2.5000000000E-01 -2.5000000000E-01



• with ABINIT (output file):

Example 1: c-ZrO2

 Symmetries : space group Fm -3 m (#225); Bravais cF (face-center cubic)
   spgroup       225
    symrel    1  0  0   0  1  0   0  0  1      -1  0  0   0 -1  0   0  0 -1
              0 -1  1   0 -1  0   1 -1  0       0  1 -1   0  1  0  -1  1  0

              ...                               ...

              0  0 -1   1  0 -1   0  1 -1       0  0  1  -1  0  1   0 -1  1
             -1  1  0  -1  0  1  -1  0  0       1 -1  0   1  0 -1   1  0  0

inversion mirror plane



• with ABINIT (input file):

Example 1: c-ZrO2

     natom         3
     acell    5.0100000000E+00  5.0100000000E+00  5.0100000000E+00 ANGST
     rprim    0.0000000000E+00  5.0000000000E-01  5.0000000000E-01
              5.0000000000E-01  0.0000000000E+00  5.0000000000E-01
              5.0000000000E-01  5.0000000000E-01  0.0000000000E+00
     typat    1  2  2
   spgroup       225
     natrd         2
      xred    0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
              2.5000000000E-01  2.5000000000E-01  2.5000000000E-01



• with WPASSIGN on the Bilbao Crystrallographic Server:  
 
 
 
 
 
 
 
 

• with ABINIT 

Example 2: Si

     natom         2
     acell    5.4310000000E+00  5.4310000000E+00  5.4310000000E+00 ANGST
     rprim    0.0000000000E+00  5.0000000000E-01  5.0000000000E-01
              5.0000000000E-01  0.0000000000E+00  5.0000000000E-01
              5.0000000000E-01  5.0000000000E-01  0.0000000000E+00
     typat    1  1
      xred    1.2500000000E-01  1.2500000000E-01  1.2500000000E-01
              8.7500000000E-01  8.7500000000E-01  8.7500000000E-01



• with ABINIT (output file):

Example 2: Si

 Symmetries : space group Fd -3 m (#227); Bravais cF (face-center cubic)
   spgroup       227
    symrel    1  0  0   0  1  0   0  0  1      -1  0  0   0 -1  0   0  0 -1
              0 -1  1   0 -1  0   1 -1  0       0  1 -1   0  1  0  -1  1  0
              ...                               ...

     tnons    0.0000000  0.0000000  0.0000000     0.0000000  0.0000000  0.0000000
              0.0000000  0.5000000  0.0000000     0.0000000  0.5000000  0.0000000
              ...                               ...

screw axis glide plane



The plane-wave basis set



Treatment of periodic systems
• For periodic systems (with the lattice vectors R), Bloch theorem’s states: 
 
 

• If we define the reciprocal lattice (with the lattice vectors G), such that: 
 
 
 

the periodic part of the Bloch’s function can be written: 
 
 
 

where the coefficients unk(G) are obtained by a Fourier transform:

 nk(r + R) = eik·R nk(r)

 nk(r) = eik·runk(r) unk(r + R) = unk(r)with

eiG·R = 1

and

৾৷ু)ৈ* > ণු ৾৷ু)ণ*৯৲ণՖৈ

৾৷ু)ণ* > 2ʉ ඝʉ ৾৷ু)ৈ*৯ң৲ণՖৈ৮ৈ ಖ৷ু)ৈ* > ণු ৾৷ু)ণ*৯৲)ু,ণ*Ֆৈ



The supercell technique for non-periodic systems
Point defect in a bulk solidMolecule Surface 

The supercell must be sufficiently big : convergence study



• The coefficients unk(G) for the lowest-energy eigenfunctions decrease 
exponentially with the kinetic energy (k+G)2/2. 

• The plane-waves to be considered in the sum are selected using a kinetic 
energy cut-off Ecut (which defines the plane-wave sphere):

Kinetic energy cut-off

(k +G)2

2
< Ecut

ecut

ң23Ҙ3৯৲)ু,ণ*Ֆ৻
↑



The number of plane-waves is not a continuous 
function of the cut-off energy...

N0 4 8 12 16 20 24
pw

cut
1/2(2E    )

... nor it is as a function of the lattice parameter



There are discontinuities in the pressure and 
energy curves

Pressure

Lattice parameter

Energy

Lattice parameter



Removal of the discontinuities

u(G)=0u(G)≠0

(2Ecut)1/2

Kinetic energy

∣k+G∣

(2(Ecut � Ecut smear))1/2

Kinetic energy

∣k+G∣(2Ecut)1/2

u(G) 
weak

u(G)=0u(G)≠0

ecutsm



• The Fourier transform theory teaches us that: 

– details in real space are described if their characteristic 
length is larger than the inverse of the largest wave-vector 
norm (roughly speaking) 

– the quality of a plane wave basis set can be systematically increased 
by increasing the cut-off energy 

• Problem: huge number of PWs is required to describe localized features 
(core orbitals, oscillations of other orbitals close to the nucleus) 

• Pseudopotentials (or, in general, « pseudization ») are needed to 
eliminate the undesirable small wavelength features

Plane-waves are a natural and simple basis...



Pseudopotentials



• Idea: Exploit the fact that core electrons occupy orbitals that are the 
« same » in the atomic environment or in the bonding environment 

• Separation between core and valence orbitals for the density: 
 
 
 
 
 

• « Frozen core » approximation: 
This approximation obviously influences the accuracy of the 
calculation !

Core and valence electrons (I) 

৷)ৈ* > 
৲ු ಖҨ৲ )ৈ*ಖҨ৲ )ৈ*

> dpsfු৲ҙdpsf ಖҨ৲ )ৈ*ಖҨ৲ )ৈ* , wbm
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Small / large core 
• It depends on the target accuracy of the calculation ! 
• For some elements, the core/valence partitioning is obvious:  

F atom: 1s2      2s2  2p5 
   IP          1keV    10-100 eV 

• For some others, it is not:  
Ti atom: 1s2   2s2  2p6   3s2  3p6   4s2  3d2  small core  
 

 1s2   2s2  2p6   3s2  3p6   4s2  3d2  large core  
   IP                                   99.2 eV   43.3eV 

• Gd atom: small core with n=1,2,3 shells, might include 
 4s, 4p, and 4d in the core, 4f partially filled



• Separation between core and valence orbitals for the energy: 
 
 
 
 
 
 
 
 

• One needs an expression for the energy of the valence electrons ...

Core and valence electrons (II) 

EKS ψ i{ }"# $% = ψ i −
1
2
∇2 ψ i

i
∑ + Vext (r)n(r)∫ dr + 1

2
n(r1)n(r2 )
r1 - r2

∫ dr1dr2 + Exc n[ ]

EKS ψ i{ }"# $% = ψ i −
1
2
∇2 ψ i

i∈core

Ncore

∑ + Vext (r)ncore(r)∫ dr + 1
2

ncore(r1)ncore(r2 )
r1 - r2

∫ dr1dr2

                  + ψ i −
1
2
∇2 ψ i

i∈val

Nval

∑ + Vext (r)nval (r)∫ dr + 1
2

nval (r1)nval (r2 )
r1 - r2

∫ dr1dr2

                  + nval (r1)ncore(r2 )
r1 - r2

∫ dr1dr2 + Exc ncore + nval[ ]



• The potential of the nuclei κ is screened by the core electrons: 
 
 
 
 

• The total energy becomes 
 
 
 
 

with Eval,KS ψ i{ }"# $% = ψ i −
1
2
∇2 ψ i

i∈val

Nval

∑ + Vion,κ (r)
κ
∑
+

,-
.

/0
nval (r)∫ dr

                    + 1
2

nval (r1)nval (r2 )
r1 - r2

∫ dr1dr2 + Exc ncore + nval[ ]

Valence electrons in a screened potential

Non-linear XC 
core correction

Vion,κ (r) = −
Zκ

r − Rκ

+
ncore,κ (r1)
r - r1

∫ dr1

Vion,κ (r) = −
Zval ,κ

r − Rκ

+ −
Zcore,κ

r − Rκ

+
ncore,κ (r1)
r - r1

∫ dr1
$

%&
'

()

E = Eval + Ecore,κ
κ
∑

#

$%
&

'(
+
1
2

Zval ,κZval ,κ '

Rκ − Rκ '(κ ,κ ')
κ ≠κ '

∑



• The valence orbitals must still be orthogonal to core orbitals 
⇒ oscillations, slope at the nucleus, ... 

• Pseudopotentials try to remove completely the core orbitals from the 
simulation by removing the strong changes within a « cut-off radius » 
(r < rcut):  
 
 
 
with 
 
 
 

                                                                  and 

Removing core electrons (I)
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• Various conditions can be imposed: e.g. norm conservation 
[D.R. Hamann, M. Schlüter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979)] 
 
 

• The general form of pseudopotential acts on the wavefunctions as 
follows:  
 
 
 
with 
 

and 

Removing core electrons (II)

ܹৈ} ০qt }}ಖܺ > ඝ qt)ৈ- ৈໟ*ಖ)ৈໟ*৮ৈໟ
kernel

৹ৼ)ৈ- ৈໟ* > mpd)ৈ*ಂ)ৈ ң ৈໟ* , OM)ৈ- ৈໟ*
OM)ৈ- ৈໟ* > ৵ු-৶ ৩ Ҩ৵-৶)ಆ- ಜ*OM-৵)৻- ৻ໟ*৩৵-৶)ಆໟ- ಜໟ*

ඝ৻=৻dvu
}}ಖqt৲ )ৈ*}}3 ৮ৈ > ඝ৻=৻dvu

}}ಖ৲)ৈ*}}3 ৮ৈ



• The most widely used pseudopotentials belong to two different classes: 
– the semi-local pseudopotentials for which: 
 
[G.B. Bachelet, D.R. Hamann, and M. Schlüter, Phys. Rev. B 26, 4199 (1982)] 

– the separable pseudopotentials for which: 
 
[L. Kleinman and D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)] 

• Semi-local pseudopotentials are easily visualized, but separable ones are 
definitely more powerful for numerical techniques. 

• A technique was introduced to transform semi-local pseudopotentials into a 
separable form (caution: ghost states may appear).

Forms of pseudopotentials

OM-৵)৻- ৻ໟ* > TM-৵)৻*ಂ)৻ ң ৻ໟ*
OM-৵)৻- ৻ໟ* > ಌҨ৵ )৻*ৰ৵ಌ৵)৻ໟ*



3s Radial wave function of Si

Example of pseudopotential

Radial distance [a.u.]
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External files in a ABINIT run

Filenames

ABINIT
Main input

Pseudopotentials

(previous results)

« log »

Main output

(other results)

Results : density (_DEN), potential (_POT), 
               wavefunctions (_WFK), ...

Example of “Filenames” file:  

../t11.in  
t1x.out
t1xi
t1xo
t1x
../../../Psps_for_tests/01h.pspgth

 prompt:> abinit < t1x.files >& log


