
PLUMED Tutorial
A portable plugin for free-energy calculations
with molecular dynamics

CECAM, Lausanne, Switzerland
September 28, 2010 - October 1, 2010

This document and the relative computer exercises have been written
by:

Massimiliano Bonomi
Davide Branduardi
Giovanni Bussi
Francesco Gervasio
Alessandro Laio
Fabio Pietrucci

Tutorial website:
http://sites.google.com/site/plumedtutorial2010/

PLUMED website:
http://merlino.mi.infn.it/∼plumed

PLUMED users Google group:
plumed-users@googlegroups.com

PLUMED reference article:
M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi, P. Rai-
teri, D. Donadio, F. Marinelli, F. Pietrucci, R.A. Broglia and M. Par-
rinello, PLUMED: a portable plugin for free-energy calculations with
molecular dynamics, Comp. Phys. Comm. 2009 vol. 180 (10) pp. 1961-
1972.

1

http://dx.doi.org/10.1016/j.cpc.2009.05.011
http://dx.doi.org/10.1016/j.cpc.2009.05.011

Contents

1 Compilation 4
1.1 PLUMED compilation 4

1.1.1 Compile PLUMED with GROMACS 5
1.1.2 Compile PLUMED with QUANTUM ESPRESSO 9
1.1.3 Compile PLUMED with LAMMPS 10

2 Basics: monitoring simulations 13
2.1 Syntax for collective variables 14
2.2 Monitoring a CV . 16
2.3 Postprocessing with driver 19

3 Basics: biasing simulations 23
3.1 Restrained/steered molecular dynamics 23

3.1.1 An umbrella sampling calculation. Alanine dipep-
tide. 23

3.1.2 A steered molecular dynamics example: targeted
MD. 27

3.1.3 A programmed steered MD with steerplan. . . . 30
3.1.4 Soft walls . 32

3.2 Committment analysis 33
3.3 Metadynamics . 35
3.4 Restarting metadynamics 38
3.5 Free-energy reconstruction 38
3.6 Well-tempered metadynamics 41

4 Parallel machines 43
4.1 Exploiting MD parallelization 43
4.2 Multiple-walkers metadynamics 45

2

4.3 Parallel-tempering metadynamics 47
4.3.1 Parallel tempering 48
4.3.2 The best from both worlds 50

4.4 Bias-exchange metadynamics 52
4.4.1 Convergence of the simulation 56

5 Advanced techniques 59
5.1 Path based collective variables 59

5.1.1 Metadynamics on a sub-optimal path 63
5.1.2 Metadynamics on a correct path 68
5.1.3 Path optimization 71

5.2 Variables for secondary structure in proteins 72
5.2.1 ALPHABETA . 74
5.2.2 ALPHARMSD and ANTIBETARMSD 75

5.3 Potentials on a grid . 77
5.4 Reweighting techniques 78

5.4.1 Well-tempered metadynamics calculations . . . 79
5.4.2 Weighted-histogram analysis of bias-exchange sim-

ulations . 81

6 Inside PLUMED 87
6.1 How to plug PLUMED in your MD code 87
6.2 How to add a new CV 89

6.2.1 Creating restraint newCV.c 89
6.2.2 Modifying the PLUMED source code 93
6.2.3 Final steps . 93

7 Real life applications 95
7.1 The Stone-Wales transformation in a carbon nanotube 95
7.2 A SN2 reaction in vacuum with quantum espresso . . . 96
7.3 Folding of the GB1 C-terminal β–hairpin 101

3

Chapter 1

Compilation

1.1 PLUMED compilation

Here in the following we will show a bunch of codes that work with
plumed. They have been chosen because they are all free codes and can
be downloaded straight from the web without any license or agreement.
FIrst we will show a classical code and secondly an ab-initio code. First
some useful informations. You log in as user tutoXX (which stands
for tuto01,tuto02 etc...). You will be assigned a node, say nodeYYY.
All the tests should be run in the node. Therefore you have open a
terminal and access the node you have been assigned

ssh -X tutoXX@nodeYYY

and you are on the node. Change to the scratch directory

cd /scratch

If the directory tutoXX does not exist create it and enter it.

mkdir tutoXX

cd tutoXX

This is the place where you will run all the calculations. You have a
maximum of 4 processors per terminal. You will see later how to
use them. All the exercises will be provided daily and you may find
them into:

/nfs_home/tutoadmin/PLUMED/EXERCISES_FINAL

4

which are accessible read-only. You will find the directories

1_compiling 2_basics 3_biasing ...

and you will be told time to time which directory you should copy into
your /scratch/tutoXX directory for the exercise as indicated by the
tutor. Now copy the directory into your scratch

cd /scratch/tutoXX

cp -r /nfs_home/tutoadmin/PLUMED/EXERCISES_FINAL/1_compiling .

The documentation (a file tutorial.pdf with the practical lessons and
the slides) are put in

/nfs_home/tutoadmin/PLUMED/DOCUMENTATION

and updated daily (and bugs solved: help us in improving it!). Check
it from time to time when the tutor tells you.

Now let’us go back to the compiling: first enter the 1 compiling/plumed

directory and untar PLUMED

cd 1_compiling/plumed

tar -zxvf PLUMED-1.2.1.tar.gz

cd ../

1.1.1 Compile PLUMED with GROMACS

In this section we will discuss how to compile plumed in the CECAM
machine. Our ”reference” code is GROMACS (version 4.0.7) but other
versions works in identical way. Please note that, as the number of
codes supported by PLUMED is getting larger, we’re trying at least to
discontinue the old version of the code (version 3.3 in GROMACS).

What you need to compile a GROMACS version 4.0.7 on the ottokar
cluster at cecam is similar to what you generally need on a standard
Linux machine.

• c/c++ compilers are available (gcc/g++ are fine. Intel compilers
on Linux boxes are also free for academic). We assume this is
already installed on the machine as many Linux suites allow to
download them directly as rpm packages.

• FFTW fast fourier libraries http://www.fftw.org/. 3.2.2 ver-
sion is working nicely for most of cases. We assume this to be
already installed on the system.

5

http://www.fftw.org/

• Message Passing Interface (MPI) is installed (Openmpi or MPICH
are freely available from http://www.open-mpi.org/). In several
Linux distros you can download it as rpm packages so we assume
this to be available on your system.

• GROMACS package (4.0.7) for this example (see http://www.

gromacs.org).

• PLUMED distribution is available (probably at this stage you will
have a 1.2.1 version) at the usual website http://merlino.mi.

infn.it/∼plumed.

The installation procedure closely follows the GROMACS installa-
tion with the exception that, between configuration step and compila-
tion, you have to apply PLUMED patch. Let us revise step-by-step the
procedure you have to carry out and let us assume that we work with
a bash shell so that we set up variables accordingly.

First let’s start by installing the serial version (double precision)
and then we will proceed in installing the parallel version of mdrun.
First we move to the installation directory of the exercises. We should
have everything we need. We will make use of the Intel compilers here.
Generally, neglecting the specific compiler variables, the default should
be gcc. On ottokar cluster and on many HPC machines most of the
useful environment variables are automatically provided via the module
command.

myuser> module load intel-cc/10.1.015

myuser> module load fftw/3.2.2_intel-10.1.015

and we can conveniently set up some variables that we will use and
reuse at runtime

myuser> fftw=/opt/fftw-3.2.2/intel-10.1.015

myuser> mycc=icc

myuser> myld=icc

myuser> mycxx=icpc

myuser> cd gromacs

myuser> mydir=‘pwd‘

Now we can unpack the GROMACS code and enter it. We also create a
directory install dir where all the final installation will be placed. It

6

http://www.open-mpi.org/
http://www.gromacs.org
http://www.gromacs.org
http://merlino.mi.infn.it/~plumed
http://merlino.mi.infn.it/~plumed

is rather convenient that you create your custom installation directory
so you don’t affect the installation of the other users (probably you’ll
be prevented to do this in any case, unless you do the installation as
root user).

myuser> tar -zxvf gromacs-4.0.7.tar.gz

myuser> cd gromacs-4.0.7

myuser> mkdir install_dir

Now we proceed with the full configuration:

myuser>./configure LDFLAGS=-L${fftw}/lib

CPPFLAGS=-I${fftw}/include

--prefix=$mydir/gromacs-4.0.7/install_dir

CC=$mycc LD=$myld

CXX=$mycxx --with-fft=fftw3

--disable-float --program-suffix=_d

Let us analyze what is done in this command. It first tells the configure
utility where to get the fftw through the LDFLAGS and CPPFLAGS. Then
it tells where the final installation should be done(--prefix=$mydir/gromacs-4.0.7/install dir).
This is the location where you will find libraries, executables, include-
files, manuals and topologies for gromacs. The CC,LD,CXX specify
the compiler you intend to use. In this case it will be Intel compil-
ers. If you omit this the default gcc compiler will be used. The flag
--disable-float specify to compile GROMACS in in double preci-
sion which is highly recommended for a correct PLUMED intallation .
Then the --program-suffix= d specifies that all the executables will
have the suffix d and this is needed so you know that the executables
you use are double precision by default. Now it come the patching pro-
cedure itself. You first have to specify the PLUMED location by setting
the environment variable plumedir.

myuser> export plumedir="my/path/to/plumed"

myuser> chmod +x $plumedir/patches/plumedpatch_gromacs_4.0.4.sh

myuser> $plumedir/patches/plumedpatch_gromacs_4.0.4.sh -patch

where my/path/to/plumed will look something like /scratch/tutoXX/1 compiling/plumed/PLUMED-1.2.1

Then have a look to what is happening. If the patching procedure goes
fine you should have something like this.

7

* I will try to patch PLUMED version cvs ...

-- Executing pre script

-- Setting up symlinks

-- Setting up recon symlinks

-- Applying patches

patching file ./src/kernel/md.c

patching file ./src/kernel/repl_ex.c

Hunk #4 succeeded at 204 (offset 4 lines).

Hunk #5 succeeded at 220 (offset 4 lines).

Hunk #6 succeeded at 452 (offset 4 lines).

Hunk #7 succeeded at 481 (offset 4 lines).

Hunk #8 succeeded at 511 (offset 4 lines).

Hunk #9 succeeded at 569 (offset 4 lines).

Hunk #10 succeeded at 613 (offset 4 lines).

Hunk #11 succeeded at 682 (offset 4 lines).

patching file ./src/kernel/repl_ex.h

patching file ./src/kernel/Makefile

patching file ./src/kernel/mdrun.c

-- Executing post script

- DONE!

If you find some failures at this stage it is likely that the GROMACS
download version changed somehow or you choose the wrong patch
for this code. Please note that a successful patching does not mean a
successful compiling. So please check carefully if you have errors during
the compiling after the patching is done.

Now you are ready. Give it a go!

myuser> make

myuser> make install

Check that you have everything you need:

myuser> ls install_dir/bin

Now, assuming everything went fine, let us recompile mdrun only in
double precision, with MPI support. First, let us clean and unpatch:

myuser> make clean

myuser> $plumedir/patches/plumedpatch_gromacs_4.0.4.sh -revert

Load the parallel compilers:

8

myuser> module load openmpi/1.2.6_intel-10.1.015

and now we can reconfigure and repatch:

myuser> ./configure LDFLAGS=-L${fftw}/lib

CPPFLAGS=-I${fftw}/include

--prefix=$mydir/gromacs-4.0.7/install_dir

CC=$mycc LD=$myld

CXX=$mycxx --with-fft=fftw3

--disable-float --program-suffix=_mpid

--enable-mpi

myuser> $plumedir/patches/plumedpatch_gromacs_4.0.4.sh -patch

myuser> make mdrun

myuser> make install-mdrun

Verify once again that everything went fine in patching and compila-
tion. Now in the install dir/bin directory you should have all the
* d executable and mdrun mpid which you just compiled. Now, for
having all the executables in your path you have to source GMXRC

myuser>source ./install_dir/bin/GMXRC

and now mdrun d and mdrun mpid should be in your path. Just chek
it by doing

myuser>mdrun_d

myuser>mdrun_mpid

should work and GROMACS should print out its banner and die (no
input file provided).

1.1.2 Compile PLUMED with QUANTUM ESPRESSO

Here we show how to compile PLUMED with the popular DFT pack-
age QUANTUM ESPRESSO (http://www.quantum-espresso.org)
on the CECAM machine ottokar. Actual version of QUANTUM
ESPRESSO is 4.2.1 and the plumed patch for version 4.2 works fine
for the 4.2.1 version as well. First we load the environments for the
Intel compilers and openmpi intel compilers. Now enter the directory
1 compiling/quantumespresso and do

9

http://www.quantum-espresso.org

myuser> module purge

myuser> module load intel-cc/10.1.015

myuser> module load intel-fc/10.1.015

myuser> module load intel-mkl/10.0.1.014

myuser> module load openmpi/1.2.6_intel-10.1.015

Then we unpack the code and simply configure.

myuser> tar -zxvf espresso-4.2.1.tar.gz

myuser> cd espresso-4.2.1

myuser> ./configure

This should provide the basic configuration to install the clean QUAN-
TUM ESPRESSO package.

myuser> export plumedir="my/path/to/plumed"

myuser> chmod +x ${plumedir}/patches/plumedpatch_qespresso_4.2.0.sh

myuser> ${plumedir}/patches/plumedpatch_qespresso_4.2.0.sh -patch

myuser> make pw

As usual, check if the patch produce any error. After few minutes you
should have obtained a version of pw (you should have ./bin/pw.x)
that is ready and working.

1.1.3 Compile PLUMED with LAMMPS

Another interesting classical molecular dynamics code is LAMMPS.
LAMMPS is a very scalable code intended primarily for solid state and
mesoscopic simulations. It includes a variety of force field and func-
tional forms and is fully customizable via an interface that allows you
to accept/reject plumed as an addon to the code. You may download it
from http://lammps.sandia.gov free of charge. Compiling LAMMPS
can be non trivial and here we assume to do a very basic installation
where the main flags have been setted up for the ottokar machine.

First, goto into the directory containing LAMMPS and untar it and
load the modules that then you will need for compiling.

myuser> cd 1_compiling/lammps

myuser> tar -xvf lammps.tar.gz

myuser> cd lammps-24Sep10

myuser> module purge

10

http://lammps.sandia.gov

myuser> module load intel-cc/10.1.015

myuser> module load intel-fc/10.1.015

myuser> module load fftw/2.1.5_intel-10.1.015

myuser> module load openmpi/1.2.6_intel-10.1.015

Now copy some Makefiles that have been specifically hacked to work
on the machine you are using

myuser> cp ../Makefile.icc.atc ./lib/atc/Makefile.icc

myuser> cp ../Makefile.openmpi ./src/MAKE/Makefile.openmpi

The very first thing one should do is to compile the modules that
appears in the lib directory and that one intend to compile (all these
Makefiles have been suitably hacked to run on the ottokar machine):

myuser> cd ./lib/atc

myuser> make -f Makefile.icc

myuser> cd ../meam

myuser> make -f Makefile.ifort

myuser> cd ../poems

myuser> make -f Makefile.icc

myuser> cd ../reax

myuser> make -f Makefile.ifort

myuser> cd ../../

These modules are additional packages that must compiled as libraries
and you might need. We just skip the gpu package as we intend
to use the code on a standard CPU based machine. At this stage
you are ready for compiling the clean version and you should edit
the most appropriate Makefile.arch in the ./src/MAKE directory.
In ottokar we use the Makefile.openmpi configuration file suitably
adapted in few things (location of FFTW, location of Intel compilers
libraries) that we will provide along with the installation. Overwrite
it on ./src/MAKE/Makefile.openmpi and you are done. Next step is
patching the code as usual

myuser> export plumedir="my/path/to/plumed"

myuser> chmod +x ${plumedir}/patches/plumedpatch_lammps_24-09-2010.sh

myuser> ${plumedir}/patches/plumedpatch_lammps_24-09-2010.sh -patch

At this stage we should have everything we need and we should proceed
to a standard LAMMPS installation. We first install the modules we
need

11

myuser> cd src

myuser> make yes-standard

myuser> make no-gpu

and check if PLUMED is already turned on (it should be done automati-
cally by the patching procedure).

myuser> make package-status

...

Installed YES: package USER-PLUMED

...

Now simply do:

myuser> make openmpi

and after some ages(!) you should get the executable lmp openmpi.

12

Chapter 2

Basics: monitoring
simulations

In this chapter we will see the basics instruction for creating a PLUMED

input files and review the output that it produces during the simu-
lation. At the end of this chapter the user should be able to write
a simple plumed input file and monitor the CVs of choice by simply
consulting the manual for each CV individual syntax. The philosophy
behind PLUMED requires that one may use the same input with different
programs. This is only partly true because different programs have
different internal units. For example, in GROMACS, distances are in
nm and energies are in kjoule/mol while in NAMD and SANDER the
distances are in Å and the energies are in kcal/mol. Keep this in mind
because it is crucial to understand which are the internal units of the
program you are running before you do a simulation. It may let you
save lots of human and computer time. Moreover, in all the CVs, one
should specify the atoms involved in it. In different programs the atom
indexing may be different. Therefore do not expect that a given tor-
sion that you specify with a number of indexes is transferable from
GROMACS to NAMD and viceversa.

Different programs call PLUMED in different ways. GROMACS for
example calls it at runtime from the command line:

mdrun -plumed metadyn

for example tells mdrun to enable PLUMED and look its input in a file
called metadyn.dat. The default extension .dat is automatically ap-
pended to the input file name. The screen output, that in GROMACS

13

is md.log contains PLUMED screen output. It is quite important that
at runtime you check it so to verify that all the option are interpreted
correctly from PLUMED.

Other programs require a different way to specify that PLUMED is
enabled. Check the manual for reference and the input files provided
in the directory test of the standard PLUMED distribution.

Just to mention a few of them, enabling PLUMED in NAMD and
specification of the input file is done through the following syntax

plumed on

plumedfile plumed.cfg

where here there is no default extension (i.e. the name has to be fully
specified).
With SANDER (AMBER MD module), you do similarly, specifying it
at runtime:

&cntrl

imin=0, irest=0, ntx=1, ig=71278 ,

nstlim=1001, dt=0.0002,

ntc=1, ntf=1,

ntt=3, gamma_ln=5 ,

tempi=300.0, temp0=300.0,

ntpr=200, ntwx=0,

ntb=0, igb=0,

cut=999., plumed=1 , plumedfile=’plumed.dat’

/

2.1 Syntax for collective variables

A typical input file for PLUMED input is composed by specification of
one or more CVs, the printout frequency and a termination line.

14

Example.
A very simple PLUMED input file.
printout frequency

PRINT W STRIDE 10

specify a torsion

TORSION LIST 5 7 9 15

the end of plumed input

ENDMETA

Comments are denoted with a # and the termination of the input for
PLUMED is marked with the keyword ENDMETA. Whatever it follows is
ignored by PLUMED. You can introduce blank lines. They are not inter-
preted by PLUMED.

The line that starts with the keyword PRINT control the frequency
for the main PLUMED output file which is called COLVAR. This file con-
tains the data regarding the collective variable positions, the constraint
positions, the energy of hills and energy of constraints and other useful
informations that will be introduced time by time during the tutorial.
The frequency for writing is controlled by W STRIDE followed by a num-
ber that represents the number of steps between one printout and the
other. All the informations are appended in the COLVAR file and over-
written if an old COLVAR file already exists. In addition in GROMACS
if an old COLVAR file is detected, this is saved in a file COLVAR.old so to
prevent overwriting. As this tutorial is not intended to give a survey
on the all CVs available in PLUMED but more on the things you can do
with that, please do refer to the manual for specific CV related syntax.

Another useful feature is the use of the groups. It may happen that
one want to calculate properties between group of atoms. In this case
the keyword LIST can be replaced by some groups denoted by angle
bracket <g1>. In this case PLUMED looks for a group in the plumed
input.

15

Example.
A very simple PLUMED input file with groups.
printout frequency

PRINT W STRIDE 10

specify a torsion

TORSION LIST 5 7 9 <g1>

specify a group

g1->

15 16 17

g1<-

the end of plumed input

ENDMETA

This can be very useful and the group syntax allows for looping on the
atoms as well. Please refer to the manual for this option.

2.2 Monitoring a CV

As first example we perform a simple MD run of alanine dipeptide with
GROMOS96 all atom force field. In Fig. 2.1 you can see the molecular
structure. Its free energy landscape is conveniently depicted as function
of the two dihedral angles Φ and Ψ (also called ”Ramachandan plot”)
and therefore in this exercise we just run simply PLUMED and control
the two dihedral angles. First copy the exercise and enter the directory:

cp -r /nfs_home/tutoadmin/PLUMED/EXERCISES_FINAL/2_basics .

cd 2_basics/monitoring/

In this run we will perform 100 ps of NVT MD and check the evo-
lution of the collective variables with this simple input (open the file
plumed.dat)

Example.
A very simple PLUMED input file for monitoring the two Φ and Ψ dihedral angles. # printout frequency

PRINT W STRIDE 10

specify phi and psi

TORSION LIST 5 7 9 15

TORSION LIST 7 9 15 17

ENDMETA

16

Figure 2.1: A sketch of the molecular structure of alanine dipeptide. The
dihedral angles Φ and Ψ are highlited.

17

Now edit the script build and run.sh. This is a script that performs
all the needed action for doing a run: it sources the correct envi-
ronments, it creates the binary topology (this step is only required
in GROMACS) and performs the calculations. The only thing that
you should do is to adapt it to your path, execute it (just by typing
./build and run.sh) and you’ll get a bunch of interesting stuff.

First of all you will get a md.log file that contains some printout
from PLUMED so you may check wether the input was correctly read:

::::::::::::::::: READING PLUMED INPUT :::::::::::::::::

|-PRINTING ON COLVAR FILE EVERY 100 STEPS

|-INITIAL TIME OFFSET IS 0.000000 TIME UNITS

1-TORSION: (1st SET: 1 ATOMS),

(2nd SET: 1 ATOMS), (3rd SET: 1 ATOMS) , (4th SET: 1 ATOMS);

|- 1st SET MEMBERS: 5

|- 2nd SET MEMBERS: 7

|- 3rd SET MEMBERS: 9

|- 4th SET MEMBERS: 15

2-TORSION: (1st SET: 1 ATOMS),

(2nd SET: 1 ATOMS), (3rd SET: 1 ATOMS) , (4th SET: 1 ATOMS);

|- 1st SET MEMBERS: 7

|- 2nd SET MEMBERS: 9

|- 3rd SET MEMBERS: 15

|- 4th SET MEMBERS: 17

|-ANALYSIS: YOU WILL ONLY MONITOR YOUR CVs DYNAMICS

This tells you that everything is going fine. The index of atoms are
parsed correctly and the printout is correctly understood. Now what
you get is a COLVAR file that consists in the time evolution of the CVs.
Its format looks something like this:

#! FIELDS time cv1 cv2 vbias vwall vext

0.000 -2.655213716 2.760231131 0.000000000 ...

0.020 -2.676506406 2.845943731 0.000000000 ...

0.040 -2.646984155 2.749365464 0.000000000 ...

18

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 20 40 60 80 100

D
ih

ed
ra

l a
ng

le
 (r

ad
)

time (ps)

Phi
Psi

Figure 2.2: The time evolution of the variables Φ and Ψ

...

In the first line there is a simple remainder to the elements that you
have in each column. Namely time first (in ps by default in GRO-
MACS), then the value of the two CVs followed by the various ad-
ditional potential energies introduced by plumed. In this case there
is no additional potential introduced and therefore all those columns
are zeros. Now you can plot the evolution of the CVs with gnuplot
by using the command p "./COLVAR" u 1:2 t "Phi" ,"" u 1:3 t

"Psi" and you’ll get something like Fig. 2.2 If you want to understand
how they are related on the Ramachandran plot then you might use
the command p "./COLVAR" u 2:3 with gnuplot that results in a plot
like that in Fig. 2.3.

2.3 Postprocessing with driver

#!/bin/bash

source /usr/local/Modules/3.2.6/init/bash

module load intel-cc/10.1.015

module load intel-fc/10.1.015

19

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

D
ih

ed
ra

l a
ng

le
 P

si
 (r

ad
)

Dihedral angle Phi (rad)

Figure 2.3: The time population of the variables Φ and Ψ during 100 ps run.

module load fftw/3.2.2_intel-10.1.015

module load openmpi/1.2.6_intel-10.1.015

source /nfs_home/tutoadmin/PLUMED/EXERCISES

/installation/gromacs/gromacs-4.0.7/install_dir/bin/GMXRC

CATDCD="/nfs_home/tutoadmin/PLUMED/catdcd/LINUXAMD64/bin/catdcd4.0/catdcd"

TRJCONV="trjconv_d"

DRIVER="/scratch/tutoxx/1_compiling/plumed/PLUMED-1.2.1/utilities/driver/driver"

mv COLVAR COLVAR.bak

#

generate the pdb

#

echo 0 | $TRJCONV -f 2ala.gro -o 2ala.pdb

#

generate the dcd

#

$CATDCD -o traj.dcd -trr traj.trr

#

run the driver

#

$DRIVER -pdb 2ala.pdb -dcd traj.dcd -ncv 2 -nopbc -plumed plumed2.dat

20

”Oh my god! I forgot to include that special CV!”. No problem! Max
Bonomi wrote the driver utility (you may find it in $plumedir/utilities/driver

) through which you may postprocess your run and calculate that spe-
cial CV you forgot to include runtime. Of course, being limited to the
points for which you actually have the trajectory you don’t have much
statistics unless you collect very often the trajectory points (absolutely
not recommended unless you want your supervisor hating you). First
compile it. Go into your PLUMED directory (should be someting like
/scratch/tutoxx/1 compiling/plumed).

cd PLUMED-1.2.1/

cd utilities/

cd driver/

ln -s ../../common_files/* .

module load intel-cc/10.1.015

module load intel-fc/10.1.015

make intel

Then you should convert the 2ala.gro and traj.trr into a pdb/dcd
couple. This can be done with trajconv (from GROMACS) and catdcd
(from Klaus Schulten group http://www.ks.uiuc.edu/Development/MDTools/catdcd/
) At this stage you have what you need (a *.pdb and *.dcd couple).
This is done automatically by sourcing the correct executable from
the script postprocess with driver.sh (have a look into that, if you
want to do this exercise automatically you should put the correct path).
Let us assume that what you forget to calculate is now the distance
for NME3:H (atom 18) - ACE1:O (atom 6) and ALA2:O (atom 16) -
ALA2:H (atom 8) . Then a you have to produce a new plumed input
(say plumed2.dat as in the example)

Example.
#

one printout each frame

#

PRINT W STRIDE 1

#

the two distances for hydrogen bonds

#

DISTANCE LIST 18 6

DISTANCE LIST 16 8

ENDMETA

21

and by using the following command (assuming that driver points to
the correct utility)

driver -pdb 2ala.pdb -dcd traj.dcd -ncv 2 -nopbc -plumed plumed2.dat

you get a new COLVAR file with the data you need and by now you
should be able to check the data you are obtaining with gnuplot. All
the previos commands are included postprocess with driver.sh. By
simply adapting it to your path and executing it you will have this
exercise done.

22

Chapter 3

Basics: biasing simulations

3.1 Restrained/steered molecular dynamics

Once you define a bunch of collective variables of your interests PLUMED
has a number of ways in which you may affect their behavior. The fact
that you can actually influence their value depends on the fact that
each of the collective variables implemented in PLUMED has analytical
derivatives and, by biasing the value of a single CV one turns to affect
the time evolution of the system itself. The simplest way in which one
might influence a CV is by forcing the system to stay close to a chosen
value during the simulation. This is achieved with umbrella potential
that plumed provides via the directive UMBRELLA

Very often it may happen that one wants that a given CV just stay
within a given range of values. This is achieved in plumed through the
directives UWALL and LWALL that act on specific collective variables and
limit the exploration within given ranges.

Another useful strategy is the STEERPLAN directive. It allows to
perform a series of programmed steered runs and can be helpful in
performing adaptive umbrella sampling or multievent reaction within
a single simulation.

3.1.1 An umbrella sampling calculation. Alanine dipeptide.

As first example we perform an umbrella sampling calculation of the
free energy landscape of alanine dipeptide with GROMOS96 all atom
force field already seen in the previous section. In Fig. 2.1 you can
see the molecular structure. Its free energy landscape is conveniently

23

depicted as function of the two dihedral angles Φ and Ψ (also called
”Ramachandan plot”). An useful approach to depict the free energy
landscape of this molecule is based on the so called ”Umbrella Sam-
pling” (US) algorithm. Without going much into details the calculation
follows like this.

• Put an umbrella potential on a specified value of Φ and Ψ (say
Φ0 and Ψ0).

• Run a simulation and acquire reasonable statistics of the deviation
of Φ and Ψ respect to the position Φ0 and Ψ0.

• Change a bit the position of the restrain center Φ0 and Ψ0 and
start over a new simulation from the previous endpoint.

• Iterate.

By moving the restraint in with a ”snake-like” evolution one can cover
the whole range of values within the whole domain of interest −π <
Φ < π and −π < Ψ < π and, if the ”clouds” of probability of restraints
are overlapping, one can retrieve the Potential of Mean Force (PMF)
by using the Weighted Histogram Analysis Method (WHAM). The pro-
gram for WHAM is well established and can be downloaded from Alan
Grossfield website (http://membrane.urmc.rochester.edu/content/wham).

The input for a single umbrella for PLUMED is something like this:

Example.
A typical setup for a single umbrella in the umbrella sampling run

#

only some printout for acquiring the statistics

#

PRINT W STRIDE 10

#

set up two variables for Phi and Psi dihedral angles

#

TORSION LIST 5 7 9 15

TORSION LIST 7 9 15 17

#

Impose an umbrella potential on CV 1 and CV 2

with a spring constant of 500 kjoule/mol

at fixed points on the Ramachandran plot

#

UMBRELLA CV 1 KAPPA 500 AT 3.141593

UMBRELLA CV 2 KAPPA 500 AT -3.141593

ENDMETA

24

The syntax for the directive UMBRELLA is rather trivial. The directive is
followed by a keyword CV followed by an index that specify the number
of the CV on which the umbrella potential has to act. The keyword
KAPPA determines the hardness of the spring constant and its units are

[Energy units of the program]/[Units of the CV]2 (3.1)

The additional potential introduced by the UMBRELLA takes the form of
a simple Hooke’s law:

U(x) =
KAPPA

2
(CV (x)− CV0)

2 (3.2)

where CV0 is the value specified following the AT keyword. In output
the sum of the additional potential is shown in the COLVAR file. For
this specific input the COLVAR file has in first column the time, in the
second the value of CV 1, in the third the value of CV 2, in the fourth
the potential from metadynamics (zero if metadynamics is not active),
and in the fifth the additional potential introduced by umbrellas and
walls. The position of the restrain is also reported with the keyword
RST followed by the index of the CV on which the umbrella potential
is applied and the position of the constraint.

The procedure explained before is summarized by the script script.sh
that you find in the exercise folder. After you run that script you should
end up with a file called metadatafile and a number of files having
names like CV *. The file CV * contain the time and the value of the CVs
at each time. These are produced by the script itself by simple post-
processing of the COLVAR file. The metadatafile contains the name of
each time evolution CV * followed by the center of the springs and the
spring constants. The wham-2d program just need the metadatafile

and CV *. The simple command

wham-2d Px=pi -3.14159 3.14159 50 Py=pi -3.14159 3.14159

50 0.001 300 0 metadatafile free_ene.dat >out_wham

should be sufficient in producing the free energy landscape in 2d that
is represented in 3.1. In the end you should get something like that in
Fig. 3.1. You might obtain such a plot by using this simple gnuplot
script:

set term pdf noenhanced

set out "rama_gromos96.pdf"

25

-3 -2 -1 0 1 2 3

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

Phi

-3

-2

-1

 0

 1

 2

 3

Ps
i

Figure 3.1: The free energy landscape of an alanine dipeptide with the
GROMOS96 allatom force field. Isolines are drawn every 1kcal/mol.

26

unset key

unset colorbox

set size square

set multiplot

set view map

set xr [-pi:pi]

set yr [-pi:pi]

spl "free_ene.dat" u 1:2:3 w pm3d

set xlab "\Phi"

set ylab "\Psi"

unset surf

set contour base

set cntrp lev incr 0,1,40

unset pm3d

unset clabel

spl "free_ene.dat" u 1:2:3 w l

quit

3.1.2 A steered molecular dynamics example: targeted MD.

As a second example of the restraint features of PLUMED we discuss
here the use of the directive STEER. Very often it is useful to drag the
system from an initial configuration to a final one by pulling one or
more CVs. Most of time the aim of such simulations is to prepare
the system in a particular state or produce nice snapshots for a cool
movie. The reason behin the limited usefulness of such simulations is
that in most of the cases these are ”out-of-equilibrium” simulations and
they are not representative of equilibrium ensemble that is generally
of interest for simulations. However, Jarzynski [1] inequality provides
a connection between out-of-equilibrium trajectories and equilibrium
free energy differences. This inequality consists in:

∆F = −β−1 ln < exp(−βW) > (3.3)

where the average is calculated over the work obtained from a number
of out-of.equilibrium trajectories. β is kbT and ∆F is the free energy
difference. The value of W can be obtained via

W =
∫ ts

0
dt

∂Hλ(t)

∂t
(3.4)

27

where Hλ is a modified hamiltonian which contains an additional term,
namely:

Hλ(t) = H + Uλ(t) (3.5)

= H +
k

2
(CV (x)− λ(t))2 (3.6)

= H +
k

2
(CV (x)− CV0 − vt)2. (3.7)

From which it comes naturally that the derivative is simply:

∂Hλ(t)

∂t
= −vk(CV (x)− CV0 − vt) (3.8)

= −vk(CV (x)− λ(t)) (3.9)

and therefore the integral W can be obtained simply by quadrature
summing up all the deviation respect to the position of the mobile
center of the harmonic restraint.

In the limit of lots of pulling therefore meaningful free energy dif-
ferences can be retrived. Here in this example we do not focus on the
Jarzynski limit but on the details on how to steer a molecule fo ala-
nine dipeptide towards one of its minima. We first prepare the system
around Φ ' −2.6,Ψ ' 2.8 (see Fig. 3.1) and we pull the heavy atoms
towards the other minimum located around Φ ' 1,Ψ ' −0.5. In order
to do that we won’t use the two dihedrals but an input pdb representing
the heavy atoms in that situation. This is generally called ”Targeted
MD”. The input looks like:

Example.
PRINT W STRIDE 100

#

create a cv that measure MSD from a reference structure

#

TARGETED TYPE RMSD FRAMESET min.pdb

#

steer this CV to a value of 0.0

#

STEER CV 1 TO 0.0 KAPPA 10000000.0 VEL 0.0001

#

additional variables that may be useful

#

TORSION LIST 5 7 9 15

TORSION LIST 7 9 15 17

ENDMETA

28

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 20 40 60 80 100

nm
**

2

ps

CV
Moving constraint

Figure 3.2: Following a steered MD run during time

Note the syntax of the TARGETED that is intended to use a reference in
MSD space (min.pdb in this case). The syntax of STEER is also speci-
fied. It requires a keyword CV in order to specify the index of the vari-
able on which the steering has to be carried out. In this system there are
three variables (TORSION are also CVs) but only the first CV (TAR-
GETED) has to be steered to a given value. The target value is spec-
ified by the keyword TO followed by the value that has to be reached.
Then the keyword KAPPA comes and specify the hardness of the spring
constant (in this case the units are (kjoule/mol)/nm4 as the units of the
TARGETED variable are nm2. This is true only for GROMACS. Other
programs adopt Å2). One can follow the evolution through gnuplot
by visualizing the instantaneous value of the CV and the position of
the moving constraint by the simple command p "./COLVAR" u 1:2 t

"CV","" u 1:10 t "Moving constraint" and obtain a plot like the
one reported in Fig. 3.2. Now we can also give a try in calculating the
work W . Run the awk script with the command:
./integrate.awk time=1 cv=2 constr=10 kappa=10000000.0 COLVAR

>work.dat

and plot work.dat with gnuplot and the command p "./work.dat"

u 2:($3/4.186) w lp so you will obtain a plot of the work (see Fig.
3.3).

29

-1

 0

 1

 2

 3

 4

 5

 0 0.005 0.01 0.015 0.02 0.025 0.03

W
or

k
(k

ca
l/m

ol
)

CV (nm**2)

Figure 3.3: The work calculated during a steered MD run.

3.1.3 A programmed steered MD with steerplan.

Another feature that is implemented in PLUMED is a ”tunable” mov-
ing restraint called STEERPLAN. The basic idea behind is the fact that
many times what one wants to study is a multistep process. For ex-
ample consider an enzymatic reaction which is made of several proton
transfers and nucleophilic attack. It can be rather usefil whenever one
needs to create a guess path for path collective variables calculations.
Instead of creating multiple steered MD run, each of those has a sin-
gle cv which is steered at a time, you can put all the variables in a
single PLUMED input and then plan the steering so that you first steer
one CV then you switch this potential off and switch another potential
that steers a different CV, all within a single run. In this example we
will see the usual alanine dipeptide and we will reach the minimum at
Φ ' 1,Ψ ' −0.5 through a two-step process. First we will pull Ψ to
-0.5 and keep Φ fixed at -2.6, then we will pull Φ to 1.0 and then release
all the constraint. The input is simple

30

Example.
PRINT W STRIDE 100

#

Phi and psi angles

#

TORSION LIST 5 7 9 15

TORSION LIST 7 9 15 17

#

steerplan

#

STEERPLAN myplan

ENDMETA

The keyword STEERPLAN expects a file whose name is myplan in this
case that contains the rules for the programmed steering. In this case
it looks like this:

0.000 CV 1 100.0 -2.6 CV 2 100.0 2.8

30.000 CV 1 100.0 -2.6 CV 2 100.0 -0.5

60.000 CV 1 100.0 1.0 CV 2 100.0 -0.5

70.000 CV 1 0.0 1.0 CV 2 0.0 -0.5

which means: at time 0.0 put an harmonic constraint on the CV 1
whose hardness is 100 kjoule/mol centered on the value -2.6. On the
CV 2 do the same but centered on the value 2.8. At later time (30 ps)
the constraint on CV 1 is the same while on CV 2 its center should be
now at 0.5. Thus the program is keeping a fixed harmonic constraint on
the first variable while moving the second up to reaching -0.5. From 30
ps to 60 ps is the CV 1 that should move from -2.6 to 1.0. Finally, from
60 to 70 ps the springs are switched off (the spring constant are put
to 0.0) and the system is now free to thermalize in the new minimum.
Consider that STEERPLAN allows the use of wildcards * on the position
of the constraint whose meaning is ”start with an umbrella centered
where the system is” (please see the manual for the full documentation).
COLVAR file reports in the final columns the steerplan action in progress
denoted by STP which is followed by something like :

CV 1 X -2.600000 K 100.000000 T 1

that tells on which CV the steerplan is active, where is the center of
the potential, the spring constant and the type of the potential used
(there exist three different types CENTRAL whose code is 1, POSITIVE
whose code is 2, NEGATIVE whose code is 3. See manual for further

31

-2

-1

 0

 1

 2

 3

 4

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Ps
i

Phi

CVs
designed path

Figure 3.4: Evolution of the CV when steerplan is used.

details). After you run the example it is straightforward to under-
stand what happened by plotting the COLVAR file with gnuplot by using
the following command: p "./COLVAR" u 2:3 t "CVs","" u 13:21

t "designed path" (see Fig. 3.4) .

3.1.4 Soft walls

PLUMED implements soft and hard walls. Here the soft walls are ex-
plained. Very often during a metadynamics simulation it might happen
that one wants to avoid to sample some regions because they are not
chemically relevant for the pricess under study. In this case one can
adopt the so-called ”walls”. In PLUMED there exist two kind of walls:
LWALL (lower wall) and UWALL (upper wall). They act on two differ-
ent directions. LWALL prevents the system to go lower than a specified
value while UWALL prevents the system to explore regions whose CV is
higher than a specified value. This is achieved by using (by default) a
fourth order harmonic function. Some parameters can also be tuned.
The walls take the form for values larger or smaller than LIMIT in case
of UWALL and LWALL respectively:

Vwall(s) = KAPPA

(
s− LIMIT + OFF

EPS

)EXP

, (3.10)

32

where KAPPA is an energy constant in internal unit of the code, EPS a
rescaling factor and EXP the exponent determining the power law. By
default: EXP = 4, EPS = 1.0, OFF = 0 and are optional arguments In
the exercise we run alanine dipeptide in a region close to the saddle
point. In order to do that we confine with UWALL and LWALL the variable
Φ. The PLUMED input looks something like this

Example.
PRINT W STRIDE 100 #

Phi and psi angles

#

TORSION LIST 5 7 9 15

TORSION LIST 7 9 15 17

#

LWALL: a lower wall

UWALL : an upper wall

#

UWALL CV 1 LIMIT 0.1 KAPPA 100.0 EXP 4.0 EPS 1.0

LWALL CV 1 LIMIT -0.1 KAPPA 100.0 EXP 4.0 EPS 1.0

ENDMETA

The syntax for LWALL and UWALL closely resembles the ones from the
UMBRELLA. You can at this point easily figure out its meaning. LIMIT

needs to be followed by one number that specifies the bundary. KAPPA
is the spring constant. Have a look to the CVs during the run by
using the command in gnuplot: p "./COLVAR" u 2:3. You can notice
that the variable very often passes the imposed boudaries. This is not
surprising because the spring potential simply discourage to sample
those regions but is does not a-priori forbids their exploration. By
tuning KAPPA one can limit the exploration to the imposed region. Try
harder KAPPAs. What does it happen?

3.2 Committment analysis

At this stage it might be interesting to figure out you may use PLUMED

and GROMACS together in a single bash script so to perform useful
tasks. One of this task is the calculation of the so-called ”commit-
tor” function. A central issue of the rare events research is how to
judge wether a given transition state (i.e. a saddle point) in the free
energy has the expected dynamical meaning. Without dwelling into

33

details (see the good literature for that [2, 3, 4, 5, 6, 7]) the committor
probability is calculated as the probability of falling into product state
before falling into the reactant state when starting from a given point
in the phase space (that can be a given region in the collective vari-
able). Therefore, we added this section here as in the previous exercise
we already collected a bunch of point along the transition state. This
is evident if you plot the Ramachandran angles in the usual way. You
might find that part of the points fall at Φ < 0 and part fall at Φ > 0
that suggest that, across the point Φ ' 0 you have a transition state of
some kind. Further proof of it can be obtained from Fig. 3.1. In order
to do this we first collect some points along the TS with the run having
walls (see Sect. 3.1.4) because previously no frames were collected in
the trajectory (you can tune this in GROMACS input with the flag
nstxout). Then we have to follow this workflow:

• Convert traj.trr into a dcd (using catdcd).

• Convert 2ala ts.gro into a pdb (using trjconv).

• Postprocess the .pdb and .dcd with the driver so to retrieve the
exact position of Φ per each frame

• Postprocess the COLVAR file produced by the driver through awk

and create a series of files containing the indexes of the frames
along the trajectory for each slice along the collective variable.

• For each frame contained in each slice, run a MD with the PLUMED
file containing the STOPWHEN keyword so to kill the run as soon as
it reaches one boundary. In this case we consider to kill the run
when Φ < −0.8 or Φ > 0.8 and we increase a counter only if the
reactant is reached.

• At the end of running all the frames contained in the slice, then
the ratio between the frames that reached the reactant and the
total number of frames give the resulting value of the committor.

Have a look to the script committor.sh: it contains all the steps
to perform this simple committor analysis. If you launch it with
./committor.sh >outcomm at the end you should obtain a plot like
the one in Fig. 3.5.

34

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

C
om

m
itt

or

Phi

committor

Figure 3.5: The committor as calculated in the exercise.

3.3 Metadynamics

Metadynamics adds an external potential to the simulation. This bias
potential acts on a restricted number of degrees of freedom of the sys-
tem S(R) = (S1(R), ..., Sd(R)) often referred to as collective variables
or CVs. The metadynamics potential V (S, t) varies with time t and is
constructed as a sum of Gaussian functions, or hills, deposited during
the simulation:

V (S, t) =
∫ t

0
dt′ω exp

(
−

d∑
i=1

(Si(R)− Si(R(t′))2

2σ2
i

)
, (3.11)

where σi is the Gaussian width corresponding to the i-th CV and ω
the rate at which the bias grows. In the practice, Gaussians of height
equal to W are deposited every τ MD steps, so that ω = W/τ .

In order to perform a metadynamics simulation we have to:

• Choose wisely the set of CVs to address the problem. This is
a long story. To cut it short, CVs a) should clearly distinguish
between the initial state, the final state and the intermediates, b)
should describe all the slow events that are relevant to the process

35

of interest, c) their number should not be too large, otherwise it
will take a very long time to fill the free energy surface.

• Choose the Gaussian height W and the deposition stride τ . These
two variables determine the rate of energy added to your simula-
tion. If this is too large, the free energy surface will be explored at
a fast pace, but the reconstructed profile will be affected by large
errors. If the rate is small, the reconstruction will be accurate,
but it will take a longer time. The error on the reconstructed FES
depends on the ratio W/τ , not on the two parameters alone [8].

• Choose the Gaussian width σi. This parameter determines the
resolution of the reconstructed FES. The sum of Gaussians re-
produces efficiently (i.e. in a finite simulation time) features of
the FES on a scale larger than σi. A practical rule is to choose
the width as a fraction (half or one third) of the CV fluctuations
in an unbiased simulation. This is not a golden rule, since the
value of the fluctuations is not universal but usually depends on
the position in the CV space.

To activate a metadynamics calculation in PLUMED you have to use
the directive HILLS. The deposition stride τ is specified in unit of time
steps by the keyword W STRIDE, the height W by HEIGHT in internal
units of energy of the MD code used. The Gaussian width σi must be
specified on the line of each CVs with the keyword SIGMA.

A typical PLUMED input file for a metadynamics calculation looks as
follows.

Example.
HILLS W STRIDE 1000 HEIGHT 0.4

TORSION LIST 5 7 9 15 SIGMA 0.35

ENDMETA

Beside the usual COLVAR file, when you run a metadynamics calcu-
lation you get an additional file called HILLS which contains a list of
the Gaussians deposited during the simulation. In the example above,
this file would look like:

1.000 -2.617548716 0.350000000 0.400000000 0.000

36

2.000 -2.718742869 0.350000000 0.400000000 0.000

3.000 -2.662313657 0.350000000 0.400000000 0.000

4.000 -2.378730722 0.350000000 0.400000000 0.000

5.000 -2.120031391 0.350000000 0.400000000 0.000

where:

• the first column contains the time t (in internal unit of the MD
code) at which the Gaussian was deposited;

• the following d columns contain the centroid of the Gaussian,
Si(R(t)), one for each CV i;

• the following d columns contain the Gaussian sigma σi, one for
each CV i;

• the last but one column contains the value of W ;

• the last column is meaningful only in well-tempered metadynam-
ics simulations (see below).

This file will be used to calculate the estimate of the free-energy at
the end of our metadynamics calculation.

Beside the metadynamics CVs, we can add other variables that we
want to monitor during the simulation. A typical PLUMED input file
looks as follows.

Example.
Here we want to run a metadynamics calculation using a dihedral as CV. During the run we want to monitor
the evolution of another dihedral angle.

PRINT W STRIDE 500

HILLS W STRIDE 1000 HEIGHT 0.4

TORSION LIST 5 7 9 15 SIGMA 0.35

TORSION LIST 7 9 15 17

ENDMETA

The evolution of the additional variable can be monitored by looking
at the COLVAR file.

37

#! FIELDS time cv1 cv2 vbias

0.000 -2.655726464 2.760989206 0.000000000

0.500 -2.492360677 1.370313209 0.000000000

1.000 -2.617548716 -0.807834974 0.400000000

1.500 -2.163294675 0.453630761 0.172299337

2.000 -2.718742869 -0.557066598 0.783627027

2.500 -2.743156519 0.246435084 0.774082974

3.000 -2.662313657 0.024026518 1.191579452

3.4 Restarting metadynamics

In order to restart a metadynamics run, the flag RESTART must be
added on the line of the directive HILLS. This allows a metadynamics
simulation to be restarted after an interruption or after a run has fin-
ished. The HILLS files will be read at the beginning of the simulation
and the bias potential applied to the dynamics. Note that the presence
of the RESTART flag only affects the metadynamics part of the simula-
tion, and thus the usual procedure for restarting a MD run must be
followed. This depends on the particular MD engine used and can be
found in the relative documentation.

Example.
The following is an example of input file for restarting a metadynamics simulation.

HILLS RESTART W STRIDE 1000 HEIGHT 0.4

TORSION LIST 5 7 9 15 SIGMA 0.35

ENDMETA

3.5 Free-energy reconstruction

In the long-time limit, the bias potential of metadynamics converges to
the free-energy changed in sign [9]. At any time during the simulation
we can sum the Gaussians deposited so far and obtain the current
estimate of the FES using the utility sum hills. This code is very
flexible and can be executed with several options (see the manual).
The most commonly used are:

38

Example.
sum hills -file HILLS -out fes.dat -ndim 3 -ndw 1 2 -kt 0.6 -ngrid 100 100 100

-file input file with the list of Gaussians

-out output file with the FES

-ndim number of collective variables

-ndw ID of the variables for FES in output

-ngrid grid mesh dimension

-dp grid bin size

-kt kT in the energy units

-stride how often the FES is written

-2pi ID of the variables with [0; 2π] periodicity

-pi ID of the variables with [−π; π] periodicity

The file in output fes.dat contains the estimate of the free-energy
calculated on a regular grid whose dimension is specified by either
-ngrid or -dp. These parameters should be chosen with care. To
calculate accurately the potential in a given point of the CV space, a
practical rule is to choose the bin size to be half the Gaussian sigma.

The sum hills code should be used to monitor the convergence of
a metadynamics simulation. This can be easily achieved by calculating
the estimate of the FES at regular interval in time using the -stride

option and then evaluating the free-energy difference among relevant
regions (minima) of the FES as a function of time. Below we report
an example of bash script that can be used for this purpose.

Example.
Example of script to evaluate the convergence of a metadynamics run. Here we performed a metady-
namics calculation using 2 CVs. We have defined two regions in the projection of the FES onto the first
variable. The F region in which CV1 is greater than 2, and the U region in which CV1 is lower than 2. The
free-energy difference between F and U is calculated as a function of time and saved in the file DeltaF.

#!/bin/bash

sum hills -stride 100 -ndim 2 -ndw 1 -ngrid 100 100 -kt 0.6 -file HILLS

for file in fes.dat.? fes.dat.?? fes.dat.???

do

if [-f $file]; then

F=‘awk ’BEGIN{tot=0}{if(NF==2 && $1>2.0)tot=tot+exp(-$2/0.6)}END{print -0.6*log(tot)}’
$file‘

U=‘awk ’BEGIN{tot=0}{if(NF==2 && $1<=2.0)tot=tot+exp(-$2/0.6)}END{print -0.6*log(tot)}’
$file‘

delta=‘echo "$F - $U" | bc -l‘

echo $delta >> DeltaF

fi

39

Figure 3.6: Checking the convergence of a metadynamics run. Left panel.
Free-energy estimate at different time steps. Right panel. Free-energy dif-
ference between state F and U as a function of time.

40

3.6 Well-tempered metadynamics

In well-tempered (WT) metadynamics, the Gaussian height W is au-
tomatically rescaled during the simulations following:

W = W0 e
−V (S,t)

kB∆T , (3.12)

where W0 is the initial Gaussian height and ∆T a parameter with the
dimension of a temperature. The use of Eq. 3.12 guarantees that the
bias potential converges in a single simulation and does not oscillate
around the FES value, causing the problem of overfilling:

V (S, t→∞) = − ∆T

T + ∆T
F (S) + C, (3.13)

where T is the temperature of the system and C a costant.
The quantity T +∆T is often referred to as the (fictitous) CV tem-

perature, while the ratio (T +∆T)/T as bias factor. To perform a WT
metadynamics simulation with PLUMED you have to use the directive
WELLTEMPERED and specify one of the parameters described above using
either the keyword CV TEMPERATURE or BIASFACTOR. In addition, the
temperature of the system must be specified explicitly with SIMTEMP.

Here are some practical rules to choose wisely the parameters in
WT metadynamics simulations:

• The bias factor (or equivalently the CV temperature) regulates
how fast the amount of bias potential added decreases with simu-
lation time and eventually controls the extent of exploration. The
choice of these parameters depends on the typical free-energy bar-
riers involved in the process under study. In biomolecular simu-
lation, a bias factor of 10-15 which corresponds to barriers of the
order of 6-9 kcal/mol at 300K is usually appropriate. Note that
this parameter can be changed on-the-fly as needed.

• The optimal choice of the initial Gaussian height W0 is less crucial
and at the same time less trivial. It is irrilevant in the long time
regime and affects only the transient part of the simulation. A
short initial filling period can be desirable if the transverse degrees
of freedom relax quickly, otherwise a moderate initial energy rate
is a better choice.

41

Example.
The following is an example of input file for a WT metadynamics simulation at 300 (internal units of
temperature) with a bias factor equal to 15 and an initial Gaussian height of 0.4 (internal units of energy).

HILLS W STRIDE 1000 HEIGHT 0.4

WELLTEMPERED SIMTEMP 300 BIASFACTOR 15

TORSION LIST 5 7 9 15 SIGMA 0.35

ENDMETA

In WT metadynamics, the Gaussians height as written in the HILLS
file is multiplied by the factor (T+∆T)/∆T . This guarantees that when
you sum the Gaussians (by means for example of the sum hills code)
you get directly the FES. The last column of the HILLS file contains
the value of the bias factor used in the WT metadynamics simulation.
For the example above, this file would look like:

1.000 -2.617548716 0.350000000 0.428571429 15.000

2.000 -2.718742869 0.350000000 0.423889087 15.000

3.000 -2.662247736 0.350000000 0.419017741 15.000

4.000 -2.380845469 0.350000000 0.418270876 15.000

5.000 -2.119639700 0.350000000 0.420668977 15.000

42

Chapter 4

Parallel machines

Parallel machines can be exploited at two different levels:

• Parallel molecular dynamics - i.e. splitting particles on the pro-
cessors so as to run your simulation faster.

• Parallel sampling algorithms - i.e. running multiple independent
or dependent simulations at the same time.

The first type of parallelism will give a more or less linear scaling
(e.g. using two processors the simulation will be twice as fast), de-
pending on the size of the system (better scaling for larger systems)
and the efficiency of the MD code. The second type of parallelism uses
intrinsically different algorithms, discussed below, and the choice of the
number of processors is more subtle. The two levels can be combined.
For instance, if you have a 128-processor machine, you can perform 16
simulations with 8 processors each.

4.1 Exploiting MD parallelization

Most of the MD codes compatible with PLUMED can be run with
some form of parallelism, such as particle decomposition or domain de-
composition. Often this is done simply by choosing the proper number
of processors with the command mpirun. With GROMACS:

Example.
mpirun -np 8 mdrun -plumed plumed.dat

43

Notice that perfect scaling (i.e. speed proportional to number of
processes) is difficult to achieve. Moreoever, PLUMED is going to slow
done parallel simulations in some cases. In particular, the computa-
tion of the collective variables is done serially and could become the
bottleneck. As an example, try to run beta-hairpin in water using an
increasing number of processors and measure the bottleneck arising
from plumed.

Example.
time mpirun -np 1 mdrun
time mpirun -np 2 mdrun
time mpirun -np 4 mdrun
time mpirun -np 1 mdrun -plumed plumed.dat
time mpirun -np 2 mdrun -plumed plumed.dat
time mpirun -np 4 mdrun -plumed plumed.dat

Try to do it with a light collective variable:

Example.
PRINT W STRIDE 1
DISTANCE LIST <g1> <g2>
g1->
LOOP 1 500 1
g1<-
g2->
LOOP 501 1000 1
g2<-

ENDMETA

and with a heavy variable:

Example.
PRINT W STRIDE 1
DISTANCE LIST <g1> <g2> NN 6 MM 12 R 0 0.75 D 0 3.

g1->
LOOP 1 500 1
g1<-
g2->
LOOP 501 1000 1
g2<-

ENDMETA

44

4.2 Multiple-walkers metadynamics

When performing metadynamics, one needs to “fill” wells in the free-
energy landscape so as to force the system to leave them. The time
required for filling depends on the shape of the wells and on the num-
ber of CVs used, and can be reduced optimizing the hills width and
height. However, increasing too much the width leads to a loss of reso-
lution, and increasing too much the height leads to larger fluctuations
in the free-energy estimate and potentially to systematic errors. If a
parallel machine is available, the filling speed can be increased by per-
forming more simulations at the same time, with the multiple-walkers
algorithm[10].

In the multiple-walkers algorithm, several metadynamics simula-
tions are performed at the same time using the same CVs (and, usually,
the same hills parameters). Each replica is adding his own hills to a
different HILLS file, but at the same time it is also feeling the force due
to the hills added by other walkers. It has been shown[9] that in this
manner the statistical error in the free energy estimation is expected
to be independent on the number of walkers, whereas the filling speed
grows proportionally to the number of walkers, provided they sample
the space independently from each other. The (minimal) communi-
cation between replicas is just performed through the filesystem, and
there is no need to synchronize the simulations. They can even be run
on machines of different type, provided there is a common file system.

As a first test, run the ala3 system with the following plumed.dat:

Example.
HILLS HEIGHT 0.25 W STRIDE 100
WELLTEMPERED SIMTEMP 300 BIASFACTOR 7

PRINT W STRIDE 100

TORSION LIST 11 13 15 21 SIGMA 0.35
TORSION LIST 21 23 25 31 SIGMA 0.35

ENDMETA

Then estimate the free energy landscape.

45

To use multiple walkers, you should set up an independent directory
and use an independent plumed.dat file for each walker. Here is a
template plumed.dat which can be used with the ala3 system.

Example.
HILLS HEIGHT 0.25 W STRIDE 100
WELLTEMPERED SIMTEMP 300 BIASFACTOR 7
MULTIPLE WALKERS R STRIDE 1000 NWALKERS 10 ID @id@ HILLS DIR ../

PRINT W STRIDE 100

TORSION LIST 11 13 15 21 SIGMA 0.35
TORSION LIST 21 23 25 31 SIGMA 0.35

ENDMETA

The @id@ string is then substituted with the proper walker number in
each of the plumed.dat files:

Example.
for((i=0;i<4;i++)) ; do
mkdir $i
cp topol.tpr $i/
sed ”s/@id@/$i/” plumed.dat > $i/plumed.dat
done

Each walker shoud receive a unique identifier (ID keyword) and
will write the hills in a file HILLS.X where X is the walker number.
The file will be placed in the upper directory (HILLS DIR keyword).
Each replica should also be instructed about the maximum number of
allowed walkers, so as to know which HILLS files need to be searched
for (NWALKERS keyword). This is just an upper estimate of the number
of actual replicas, which can be even decided a posteriori. Just avoid
to put ”NWALKERS 1000000”, otherwise the system will spend a lot
of time in trying to open not-existent files. The R STRIDE keyword
allows to set the number of steps between subsequent trial to load new
hills added by the other walkers. This number should be as small as

46

possible provided that there is no impact on the performance due to
input/output overhead. A thousand step should be a reasonable value.

To run the simulation, just type:

Example.
for(i=0;i<4;i++)
do
cd $i
mdrun -plumed plumed.dat &
cd ../
done

You can then follow the trajectories in the run0/COLVAR, run1/COLVAR,
run2/COLVAR and run3/COLVAR files. In this example all the walkers
are starting from the same configuration. Thus, at the beginning, they
will not be independent from each other, and this could lead to an
initially large error in the free energy estimate. A possible manner to
decrease this initial error is to wait some time between starting the
walkers (a few thousand steps), and use different seeds to initialize the
velocities on each walker.

Finally, combine the hills in a single file with:

Example.
cat HILLS.0 HILLS.1 HILLS.2 HILLS.3 | sort -n > HILLS

and plot the free energy landscape.

4.3 Parallel-tempering metadynamics

This algorithm is only implemented for GROMACS.
One of the problems of metadynamics is related to the difficulty in

choosing the collective variables. As an example, let us consider again
the ala3 case, but instead of using the two φ angles as CVs we use the
end-to-end distance of the oligo-peptide. This distance is related to the
backbone dihedrals, but is not a good CV, as it can be seen running
metadynamics on it with the following input

47

Example.
HILLS HEIGHT 0.1 W STRIDE 100
WELLTEMPERED SIMTEMP 300 BIASFACTOR 10

PRINT W STRIDE 100

DISTANCE LIST 11 31 SIGMA 0.01
we just monitor the two dihedral angles
TORSION LIST 11 13 15 21
TORSION LIST 21 23 25 31

ENDMETA

4.3.1 Parallel tempering

A possible manner to accelerate sampling which is totally independent
from metadynamics is parallel tempering. In parallel tempering N
independent replicas of the system are run at different temperatures.
From time to time an exchange of coordinates is tried in a Monte Carlo
fashion, with acceptance (for replicas i and j)

P = min
(
1, exp∆β∆U

)
(4.1)

where ∆U = Ui − Uj and ∆β = 1/(kBTi) − 1/(kBTj). This allows
each trajectory to walk up and down in temperature space. When
evolved at high temperature, the system is able to cross barriers. When
annealed down to room temperature, the correct canonical distribution
is recovered again.

To run a parallel tempering simulation with GROMACS just use
the following command:

Example.
mpirun -np 16 mdrun -multi 8 -replex 100

Here you will have 8 replicas running on 16 processors (i.e. 2 processors
per replica), performing a trial exchange every 100 MD steps. Each
output file will be suffixed with the replica number. 8 input files will

48

0.2 0.4 0.6 0.8 1 1.2
End-to-end distance [nm]

-50

-40

-30

-20

-10

0

F
[k

j/m
ol

]

0 1 2 3
time [ns]

0.2

0.4

0.6

0.8

1

1.2

En
d-

to
-e

nd
 d

is
ta

nc
e

[n
m

]

Figure 4.1: (left) Free energy profiles of ala3 as a function of the end to
end distance, plotted with a stride of 1000 hills (i.e. 20 ps), obtained with
serial metadynamics (right) Time series of the end-to-end distance. From
both plots, one can clearly see that there is a strong histeresis, which is a
signature of a poorly chosen collective variable.

be necessary for gromacs, one per replica. These input files can be
generated using the following script

Example.
REPLICAS=”300 380 460 540 620 700”

for rep in $REPLICAS
do
sed ”s/@temp@/$rep/” grompp.mdp > grompp$i.mdp
grompp -f grompp$i.mdp -o topol$i.tpr -c conf$i.gro
done

49

Notice that here the file grompp.mdp is used as a template to build the
real input files grompp0.mdp, grompp1.mdp, Thus, instead of the
room temperature, ones should set the temperature to @temp@:

Example.
; extract from grompp.mdp
...
ref t=@temp@
gen temp=@temp@
...

Again (similarly to the multiple-walkers case), the replicas are start-
ing from the same configuration and are correlated. To accelerate the
decorrelation, it might be better to use different starting velocities on
the different replicas.

Temperatures should be tuned so as have an uniform acceptance
ratio across the replicas. An simple tool to generate them for atomistic
simulations in explicit water is available here http://folding.bmc.uu.se/remd/.

4.3.2 The best from both worlds

Since parallel-tempering is accelerating all the degrees of freedom, it
can be optimally combined with metadynamics, where only a few se-
lected CVs need to be chosen. When parallel-tempering is combined
with metadynamics[11], several metadynamics simulations are performed
in parallel at different temperatures. Each simulation is thus building
its own bias, which tends to compensate for its own free-energy surface.
When exchanges are tried, the acceptance needs to take into account
the fact that the bias potentials are different, so that the acceptance is
now:

P = min
(
1, exp∆β∆U expβ1Vb,1(s1)+β2Vb,2(s2)−β1Vb,1(s2)−β2Vb,2(s1)

)
(4.2)

where Vb,i(sj) is the bias in replica i calculated at the coordinates of
replica j.

To run parallel-tempering-metadynamics you also need to add the
PTMETAD directive to the plumed.dat input file and run GROMACS as
follows

50

Example.
mpirun -np 16 mdrun -multi 8 -replex 100 -plumed plumed.dat

8 hills file and 8 colvar files will be created, named COLVARX and HILLSX,
with X the replica index. All the replicas will run in the same direc-
tory and acccess to the same plumed.dat file. Notice that hills will be
rescaled proportionally to system temperature, thus adding larger hills
to high temperature replicas. The free energy profile can be recon-
structed for each replica using sum hills in the usual manner. Notice
that with this approach one can reconstruct at the same time the free
energy surface at different temperatures.

0.2 0.4 0.6 0.8 1 1.2
End-to-end distance [nm]

-50

-40

-30

-20

-10

0

F
[k

j/m
ol

]

0 1 2 3
time [ns]

0.2

0.4

0.6

0.8

1

1.2

En
d-

to
-e

nd
 d

is
ta

nc
e

[n
m

]

Figure 4.2: (left) Free energy profiles of ala3 as a function of the end to
end distance, plotted with a stride of 1000 hills (i.e. 20 ps), obtained with
parallel-tempering metdynamics. (right) Time series of the end-to-end dis-
tance. Histeresis is strongly decreased with respect to serial metadynamics.

51

Figure 4.3: Schematic representation of a bias-exchange simulation employ-
ing four replicas and four bias potentials.

4.4 Bias-exchange metadynamics

This algorithm is only implemented for GROMACS; in Plumed
1.3 it will be implemented via bash script for all MD engines.

In all variants of metadynamics the free-energy landscape of the sys-
tem is reconstructed by gradually filling the local minima with gaussian
hills. The dimensionality of the landscape is equal to the number of
CVs which are biased, and typically a number of CVs smaller than
three is employed. The reason for this is that qualitatively, if the CVs
are not correlated among them, the simulation time required to fill the
free-energy landscape grows exponentially with the number of CVs.
This limitation can be severe when studying complex transformations
or reactions in which more than say three relevant CVs can be identi-
fied.

A possible technique to overcome this limitation is parallel-tempering
metadynamics, in the last Section. A different solution is performing
a bias-exchange simulation [12, 13]: in this approach a relatively large
number N of CVs (say 10) is chosen to describe the possible transfor-
mations of the system (e.g., to study the conformations of a peptide
one may consider all the dihedral angles between amino acids). Then,
N metadynamics simulations (replicas) are run on the same system at
the same temperature, biasing a different CV in each replica. Normally,
in these conditions, each bias profile would converge very slowly to the

52

Figure 4.4: Ala3 peptide and dihedral angles used as CVs for bias-exchange
metadynamics.

equilibrium free-energy, due to hysteresis. Instead, in the bias-exchange
approach every fixed number of steps (say 10,000) an exchange is at-
tempted between a randomly selected pair of replicas a and b. The
probability to accept the exchange is given by a Metropolis rule:

min
(
1, exp

[
β(V a

G(xa, t) + V b
G(xb, t)− V a

G(xb, t)− V b
G(xa, t))

])
(4.3)

where xa and xb are the coordinates of replicas a and b and V
a(b)
G (x, t) is

the metadynamics potential acting on the replica a(b). Each trajectory
evolves through the high dimensional free energy landscape in the space
of the CVs sequentially biased by different metadynamics potentials
acting on one CV at each time (see scheme in Fig. 4.3). The results
of the simulation are N one-dimensional projections of the free energy,
whose convergence is monitored as usual: if the chosen CVs describe all
the slow degrees of freedom, after the filling time each VG grows evenly.
In the following example, a bias-exchange simulation is performed on a
Ala-Ala-Ala peptide (zwitterionic form, in vacuum with ε = 80, force
field amber03), using the four backbone dihedral angles as CVs (see
Fig. 4.4): ψ1 = (N1-C1

α-C1-N2), φ1 = (C1-N2-C2
α-C2), ψ2 = (N2-C2

α-C2-
N3), φ2 = (C2-N3-C3

α-C3). Four replicas of the system are employed,
each one biased on a different CV, thus four similar Plumed input files
are prepared as follows:

53

Example.
first input file plumed0.dat for bias-exchange on Ala3

1 kJ/mol (gromacs units) every 4 ps (timestep = 1 fs)

HILLS HEIGHT 1.0 W STRIDE 4000

PRINT W STRIDE 500

BIASXMD

psi1

TORSION LIST 1 5 11 13 SIGMA 0.314

phi1

TORSION LIST 11 13 15 21 SIGMA 0.314

psi2

TORSION LIST 13 15 21 23 SIGMA 0.314

phi2

TORSION LIST 21 23 25 31 SIGMA 0.314

#NOHILLS CV 1

NOHILLS CV 2

NOHILLS CV 3

NOHILLS CV 4

ENDMETA

Example.
second input file plumed1.dat for bias-exchange on Ala3

1 kJ/mol (gromacs units) every 4 ps (timestep = 1 fs)

HILLS HEIGHT 1.0 W STRIDE 4000

PRINT W STRIDE 500

BIASXMD

psi1

TORSION LIST 1 5 11 13 SIGMA 0.314

phi1

TORSION LIST 11 13 15 21 SIGMA 0.314

psi2

TORSION LIST 13 15 21 23 SIGMA 0.314

phi2

TORSION LIST 21 23 25 31 SIGMA 0.314

NOHILLS CV 1

#NOHILLS CV 2

NOHILLS CV 3

NOHILLS CV 4

ENDMETA

54

Example.
third input file plumed2.dat for bias-exchange on Ala3

1 kJ/mol (gromacs units) every 4 ps (timestep = 1 fs)

HILLS HEIGHT 1.0 W STRIDE 4000

PRINT W STRIDE 500

BIASXMD

psi1

TORSION LIST 1 5 11 13 SIGMA 0.314

phi1

TORSION LIST 11 13 15 21 SIGMA 0.314

psi2

TORSION LIST 13 15 21 23 SIGMA 0.314

phi2

TORSION LIST 21 23 25 31 SIGMA 0.314

NOHILLS CV 1

NOHILLS CV 2

#NOHILLS CV 3

NOHILLS CV 4

ENDMETA

Example.
fourth input file plumed3.dat for bias-exchange on Ala3

1 kJ/mol (gromacs units) every 4 ps (timestep = 1 fs)

HILLS HEIGHT 1.0 W STRIDE 4000

PRINT W STRIDE 500

BIASXMD

psi1

TORSION LIST 1 5 11 13 SIGMA 0.314

phi1

TORSION LIST 11 13 15 21 SIGMA 0.314

psi2

TORSION LIST 13 15 21 23 SIGMA 0.314

phi2

TORSION LIST 21 23 25 31 SIGMA 0.314

NOHILLS CV 1

NOHILLS CV 2

NOHILLS CV 3

#NOHILLS CV 4

ENDMETA

Note that Plumed automatically enforces the periodicity of the CV

55

TORSION between (-π,π) (e.g., when the system is close to π it feels also
the hills which were put close to -π). The four replicas start from the
same Gromacs topology file (even if it is not necessary), replicated four
times (topol0.tpr, topol1.tpr, topol2.tpr, topol3.tpr). Finally,
Gromacs is launched as a parallel run on 4 cores, with one replica per
core, with the command

Example.
mpirun -np 4 mdrun -plumed plumed -multi 4 -replex 5000

where -replex 5000 indicates that every 5000 molecular-dynamics
steps all replicas are randomly paired (e.g. 0-2 and 1-3) and exchanges
are attempted between each pair (as printed in the Gromacs *.log

files). The frequency by which exchanges are attempted is a parameter
of the simulation which should be optimized for the specific problem
at hand, but different benchmarks show that the convergence of the
simulation is robust with respect to it [13].

4.4.1 Convergence of the simulation

The convergence of the one-dimensional free-energy profiles (parallel
growth) can be monitored by plotting the sum of the hills at diferent
times with the program sum hills.x:

Example.
generate FES profiles from HILLS0 every 100 hills (important: -pi 1 declares a (-π,π) periodic range):
sum hills.x -file HILLS0 -ndim 1 -ndw 1 -stride 100 -pi 1

plot the FES profiles fes.dat.1, fes.dat.2, etc.:
xmgrace fes.dat*

The parallel growth of the bias profiles at different times for each CV
is an indication that the simulation is converged. However the best
final estimate of the free energy profile is obtained by averaging the
instantaneous bias profiles after the filling time:

F (s) ≈ − 1

t− tF

∫ t

tF
dt VG(s, t) (4.4)

56

as discussed in Ref. [14, 15]. This can be simply done with the option
-aver of sum hills.x, e.g. making an average over the last 500 hills:

Example.
sum hills.x -file HILLS0 -ndim 1 -ndw 1 -pi 1 -aver 500

The resulting estimate of the FES profile can be finally compared to
the files EQUIL FESx which contain the ”exact” FES computed from a
very long (3 µs) equilibrium MD simulation without any bias (Fig. 4.5).
In the latter case the free energy along each dihedral angle is simply
obtained as F (s) = −kBT log(p(s)), with s a dihedral angle. As one can
notice, the agreement is excellent (at a fraction of the computational
cost!), and the bias-exchange profile has a smaller uncertainty on the
barriers as there the equilibrium simulation has a very poor sampling.

An important feature of the bias-exchange technique is that, pro-
vided good CVs are employed, the computational cost scales approx-
imately linearly with the number of CVs, even if the volume of the
CV-space grows exponentially: this can be easily verified increasing
the length of the peptide to Ala4, Ala5, etc. and using the 6, 8, etc.
backbone dihedrals as CVs. In this case, using a proportional number
of CPUs the simulation time per replica remains similar. However,
as for all enhanced sampling techniques, very complex systems with
a large number of metastable states (e.g., folding a protein of say 60
amino acids) represent a major challenge.

The output files of the bias-exchange simulation can be also used to
reconstruct the fully four-dimensional free-energy landscape employing
the weighted-histogram technique, as explained in Section 5.4.2.

57

-4 -2 0 2 4
psi

1

0

5

10

15

20

F
re

e
en

er
gy

 (
kJ

/m
ol

) equil MD
bias exch.

-4 -2 0 2 4
phi

1

0

10

20

30

40

-4 -2 0 2 4
psi

2

0

5

10

15

20

-4 -2 0 2 4
phi

2

0

10

20

30

Figure 4.5: Comparison of Ala3 free-energy profiles obtained from bias-
exchange (4 replicas running for 4 ns) and from equilibrium MD (3 µs).

58

Chapter 5

Advanced techniques

5.1 Path based collective variables

Path collective variables (PathCV) are very useful whenever one wants
to find an optimal free energy channel connecting two specific regions in
the phase space and calculate the associated free energy profile. Typical
examples where the use of pathCV is beneficial are docking/undocking
of a ligand from a target, complex chemical reactions and conforma-
tional changes in biomolecules. Whether or not “two specific regions”
can be defined for an initial state and a final state depends on the na-
ture of the system under study and the choice of the subspace in which
the path is defined (coarse graining). For example one could think
that the folding of a peptide is not a suitable case for pathCVs as the
‘ ‘folded” state is easily defined, but the “unfolded” generally includes
several different states. However, by suitably “remapping” the space
in which the path is defined also the unfolded state may be univocally
defined. A good choice for folding could be the use of the number of
native hydrogen bonds. In this case the folded state would be the sate
with the maximum number of native-like hydrogen bonds, while the
unfolded state would have no hydrogen bonds. The folding paths in
this space will be all the energetically favorable changes of hydrogen
bond patterns connecting the unfolded state to the unfolded state.[16]
The level of coarsening in defining the path (i.e. the definition of the
subspace in which the path is defined) has to be decided by the user
according to its chemical intuition and it is not always easy.

A given point in the Cartesian space corresponds to a vector Θ(x) in

59

the coarse grained space (adopting the notation of Maragliano/Vanden-
Eijnden). In particular the components of this vector are defined with
θm(x), namely:

Θ(x) = (θ1(x), θ2(x), . . . , θN(x)) (5.1)

where N is the number of coarse grained variables needed to simulate a
given process. For example, in a chemical reaction it might turn to be
useful to describe the reaction in terms of some h-bond distances and
specific angles. Each of these is one θm(x). In PLUMED the choice is (so
far) limited to three possibilities: RMSD, DRMSD and CMAP. In RMSD the
representation of the configuration is done in terms of explicit Cartesian
coordinates of the subset of atoms involved in the CV. In the DRMSD

each configuration is represented in terms of a set of specific distances.
In the CMAP representation each configuration is represented in terms
of a set of contacts (whose value depends on specific distances through
a tunable switching function).

Once the subspace in which the path is defined has been chosen, a
reference path in this subspace must be defined. In PLUMED the refer-
ence path is defined in terms of a number M of points (called “frames”)
along this parametric functions, say:

Θpath(i) = (f1(i), f2(i), . . . , fN(i)). (5.2)

The number of frames defining the path depend on the length scale
of the process. An important consideration is that the frames must be
as equally spaced (in the current metric) as possible. PLUMED can run
with paths whose frames are unequally spaced, but this can result is a
poor reconstruction of the free energy profile.

Once a reference path is defined (see also below) two collective vari-
ables can be calculated in PLUMEDṪhe first returns the projection of
the current phase-space vector on the reference path. This tells us if
we are closer to the reactant state, or to the product state or if we are
somewhere in between. This CV is defined as it follows:

S(x, {Θpath(m)}m=1,M) =

∑
i i exp−(λ|Θpath(i)−Θ(x)|)∑
i exp−(λ|Θpath(i)−Θ(x)|)

(5.3)

that is a function which returns a fractional corresponding to the closest
point along the path. If the closest point is 2 then its exponential will

60

be larger respect to the other ones and therefore the CV will have a
value close to 2. However, the progress along this CV alone can be
misleading. If our system is very far from the pre-defined path or if it
takes a tangential path, we might still see that S smoothly varies from
1 to M while in reality it is following a different path. For this reason
is very useful to measure a distance from the reference path, defined as
it follows:

Z(x, {Θpath(m)}m=1,M) = −1

λ
ln
∑

i

exp−(λ|Θpath(i)−Θ(x)|)(5.4)

which is the distance along the path. Consider once again the case that
one exponential is larger than the other then it is easy to retrieve from
the formula the distance of the closest frame.

Now we can discuss how the parameter λ is chosen and how a good
set of frames {Θpath(m)}m=1,M defining the reference path is found.
Our rule of thumb for λ is to use the following formula:

λ = 2.3/ < |Θpath(i)−Θpath(i+ 1)| > . (5.5)

The reason for that is simple. The S variable should change smoothly
from a frame to another. To obtain this effect the exponentials centered
on each of the M frames must overlap. That is, even if you are precisely
on one frame, the tails of the neighbor exponential must not vanish. If
any two frames are distant ∆ in our subspace, we want to tune lambda
so that the exponential value of the neighbor is around 0.1.

0.1 = exp(−λ∆) (5.6)

which, by inversion, gives exactly the value reported above. If you are
not able to find a set of frames that have a uniform spacing then you
must calculate the value of LAMBDA according the largest inter-nodal
spacing. This might limit the resolution the reconstructed free-energy
profile.

Another important consideration is that the frames should repro-
duce a parametric curve in a reliable way. That is, the closest neighbors
to point i in the sequence (which are i−1 and i+1) must be the closest
also in the chosen space.

|Θpath(i)−Θpath(i+1)| = |Θpath(i)−Θpath(i−1)| < |Θpath(i)−Θpath(j)|(5.7)

61

with j < i− 1 or j > i+ 1 and

|Θpath(i− 1)−Θpath(i+ 1)| ' 2|Θpath(i)−Θpath(i− 1)|. (5.8)

This last condition can be difficult to fulfill if we are in a non-euclidean
space. Sometimes it helps to add more points along the path.

To judge how good is the parameterization of the path we can vi-
sualize the all-against-all frame distances in the chosen subspace.
Badly parameterized path Well parameterized path

 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

dist

frame i frame j

dist

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

dist

frame i frame j

dist

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

In Fig. 5.1 it is evident that the distance of each frame with its neigh-
bors is very bad (the diagonal elements are irregular and their distance
changes a lot along the path) while in 5.1 the diagonal elements are
much better spaced and uniform along the path. The way to produce
a well parametrized path may vary a lot. The simplest choice is to just
take a set of equally spaced frames along a straight line connecting the
initial and final state. This choice, albeit it is simple, has some draw-
backs as we will see in the first exercise. A more systematics choice
is to select the frames from a trajectory produced with PLUMED using
a steered MD or targeted MD simulations. This will ensure that the
frames that you use correspond to accessible states in the phase space.
Out of this set you can choose the most equidistant points along the
path via a Monte Carlo procedure. This is an effective but ad-hoc
solution. We recommend you to find your own effective protocol that
will be be system dependent.

A different possibility is to use the finite temperature string method
procedure described in Ref. [3]. It produces equidistant frames. But it
has the drawback of not taking into account the curvature of the space
and moreover it may produce fictitious interpolated points that may
not correspond to physical situation.

62

Another important point is the choice of the “metrics”. This means
the way in which we calculate the distances |Θpath(i) − Θ(x)| . The
adopted metrics in PLUMED depends on the chosen representation. For
example, in the RMSD representation the distance between the running
simulation frame and one reference frame is calculated as a sum of the
distances squared after optimal alignment of the two structures through
Kearsley[17] alignment method. In case of CMAP it is performed by
summing up the difference in contacts between the reference and the
running frame, squared and similarly in DRMSD the sum of the differ-
ences (squared) between two different set of distances (running frame
vs one of the references)are calculated.

PLUMED does not yet implement a general scheme for mixing vari-
ables because one one side these could be rather tricky due to the
inherent difficulty of managing different CVs within one single CV but
on the other side you might think that this can offer a safe approach to
the users (and tested). If you are interested in all the tricks behind a
general variable which is function of other variables please refer to [3].

Now, let’s come to the more practical part of this section.

5.1.1 Metadynamics on a sub-optimal path

The first exercise that we propose is to try is a metadynamics run with
pathCV on a path that does not correspond to a “low-free energy chan-
nel”. Out of time consideration, we will make use of alanine dipeptide
for this example.

Its free energy landscape is conveniently represented by two angles
that are called Ramachandran angles and are generally useful because
specific secondary structures of protein present specific combinations
of these two dihedrals. The plot of these two dihedral is called “Ra-
machandran plot”. A free energy for this small peptide as function
of these two dihedrals resembles the one showed in 5.1. It is visible a
pathway that leads to a minima which is located at Φ ' −2.6,Ψ ' 2.8
which is called Cax and another one located at Φ ' 1,Ψ ' −0.5 which
is connected to another minimum called Ceq.

Let’s assume that those two minima are known. In this case one
could naively imagine that the typical pathway would be something
that leads from Cax to Ceq via a linear path. This means that we can
take a linear interpolation of the Cartesian coordinates that go from
the reactant (Cax) to the product state (Ceq) and simply assume this as

63

-3 -2 -1 0 1 2 3

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

Phi

-3

-2

-1

 0

 1

 2

 3

Ps
i

-3 -2 -1 0 1 2 3

Phi

-3

-2

-1

 0

 1

 2

 3

Ps
i

-3 -2 -1 0 1 2 3

Phi

-3

-2

-1

 0

 1

 2

 3

Ps
i

Figure 5.1: The free energy landscape of an alanine dipeptide with the
GROMOS96 allatom force field. Iso-lines are drawn every 1kcal/mol. Two
paths are traced. A ”bad” path is in green and is obtained by straight
interpolation. In pink an optimized path is shown.

a reactive pathway (see green pathway in Fig. 5.1). Of course we can
immediately imagine that, although the two extrema are stable and
low energy, some intermediate states are rather unhappy to lie there
and we might expect to find an energetic funnel which is not running
all the way close to the initial guess. In PLUMED the input for path
collective variables is as follows:

64

Example.
The following is an example of input file for a path collective variable run.

PRINT W STRIDE 100

#

a rather rude metadynamics. do not take this as production conditions

#

HILLS W STRIDE 200.0 HEIGHT 0.4

#

the two path variables

S PATH TYPE RMSD FRAMESET frame NFRAMES 12 LAMBDA 10300 SIGMA 0.3

Z PATH TYPE RMSD FRAMESET frame NFRAMES 12 LAMBDA 10300 SIGMA 0.002

#

additional ramachandran variables might be useful to understand what is happening

#

TORSION LIST 5 7 9 15

TORSION LIST 7 9 15 17

ENDMETA

The syntax for path collective variables consists of a initial directives
S PATH or Z PATH.

S PATH is the CV that gives the progress along the path while Z PATH

gives the distance from the path itself. Then a keyword is required that
is the TYPE followed by the type. In this example is RMSD and this deter-
mines the format for the input that one has to provide. In this case it
is a simple pdb format. In this particular type it is very important that
the index in the second column of the pdb correspond to the absolute
indexing within the program. For example, in NAMD the indexing
must correspond to that of the same atoms in the formatted .coor.
In SANDER I dump a pdb from the restart or coordinate file with
ptraj and use that indexing. Similarly in GROMACS I use trajconv
and dump a pdb and use that indexing. Generally it works. Labels
and residue name and number can be different from the original one
because PLUMED is not aware of those information to double check (in
many programs there are not easy to retrieve). A last note for the RMSD
keyword. The last column of the pdb (generally beta and occupancy)
are here used to specify the weight to use in the alignment and the
displacement. For example, consider a case of protein-ligand docking:
in this case you want to measure the progress of the detachment of the
ligand from the target by using the protein as reference system. In this
case the atoms of the protein have to be included in the beta column
with a value of 1.00 while the atoms of the ligand should be marked
with a 0.00. The fact that the only thing that one wants to measure

65

are the atoms of the ligand are denoted by reporting a 1.00 for the
atoms of the ligand in the occupancy column while putting the atoms
of the protein used for of the alignment to 0.00. It is also allowed to
use the same atom for alignment and the measure. The LAMBDA deter-
mines the fudge factor for the summation of the exponential for the
formulas of the path. See equation 5.6 and note that in GROMACS
the units are nm2 (quite common pitfall!!!). This example is performed
with GROMACS. Note that in case of RMSD it is much better you use
the double precision version of the code. Therefore it consists in the
following steps.

• Modify the md.mdp (which is the GROMACS input parameter
file) according to your needs. Here is the point where you should
provide the number of steps. Note that in this case we use fully
flexible hydrogens and no constraints on them. This is an ac-
cepted standard for alanine dipeptide.

• Generate the topol.tpr via grompp GROMACS preprocessing
program. This file is the only one needed to run a plain run
with mdrun. In case of a run with PLUMED you should spec-
ify that you use PLUMED at runtime and use the input reported
above. For example it is likely that by running mdrun -plumed

metadyn (wheremetadyn.dat is the metadynamics input file re-
ported above) will work if your mdrun version is compiled with
PLUMED .

The script file is therefore something like this

Example.
grompp -f md.mdp -c 2ala.gro -p gromacs.top

mdrun -plumed metadyn

I find personally very helpful to have a look to the COLVAR file and
HILLS file while are being produced. Just by asking yourself if what
you see is what you expect you can double check if your input file
is correct. What you might see from this experiment is that COLVAR

(column 2:3, plot with gnuplot and a command like plot "COLVAR" u

2:3 w p) you have a plot like the one reported below in Fig. 5.2.

66

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 2 4 6 8 10 12

di
st

an
ce

 fr
om

 th
e

pa
th

 (n
m

**
2)

progress along the path

Figure 5.2: Progress and distance from the path in case of wrong path. The
system does not follow the path closely but most of time is spent far away
from the guess path.

Another additional test you could try to do yourself is to try to
reduce the LAMBDA of a couple of orders of magnitude and try to increase
it. What do you observe? (Large LAMBDA ”atomize” regions together
and hills width become strongly anisotropic. Small value lump all the
space as it was one. Is this expected? Give a look to the equations of
path CVs to make up your mind about that).

An important observation, the most important of all, is that for
most of the progress along the path your system does not follow the
path closely (Ideally the system follows the path when most of time
stays at distance of the path' 0). This is crucial because it underlines
that the guess pathway does not reproduce the reactive event as imag-
ined. Fine, but you see the transition. So why bother? The fact is
that states (and transition states) at large distance from the path in-
clude a number of structures that may be quite diverse. Therefore the
transition state you might get is not composed of structures that have
0.5 probability of falling into the reactant before falling into the prod-
ucts (which is a ”coarse” but correct definition of dynamical transition
state). The result is that the free energy can be lower than expected
from the experiment (because you lump in the TS a set of states that
may be pre and post TS which, by definition, have lower energy). For

67

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 2 4 6 8 10 12

di
st

an
ce

 fr
om

 th
e

pa
th

 (n
m

**
2)

progress along the path

Figure 5.3: Progress and distance from the path in case of a correct path.
The system does now follow closely the path.

these reason, whenever your system does not like to walk right on your
path, please be suspicious and consider to adopt an improved version
of the path (more about how to obtain it below).

5.1.2 Metadynamics on a correct path

What happens when the path is almost good? In this example we
do the same exercise as done previously (same input files. Just minor
modifications) but on an improved pathway (the pink one in Fig. 5.1)
. In case you change the pathway there are different options. One
of that is just substitute the old reference files for the guess path (in
the previous example their name was frame 1.pdb, frame 2.pdb, . . .,
frame 12.pdb) and remember to change the LAMBDA. This is mandatory
because if the path changes but the number of guess point changes it is
likely that the internodal distance change as well and the factor LAMBDA
should be recalculated with the equation 5.6. In this case LAMBDA is
3800 that is a signal that now the pathway is longer. By repeating
the same metadynamics calculation as before then you find a different
landscape that is much better in that the path is strongly followed
by the system during the metadynamics as an equivalent plot of the
COLVAR file points out. As you might expect now, the plot you obtain is

68

pretty similar to the one you obtained before. It is just a ”deformation”
of it. This is rather important. Path collective variables may create
”ad-hoc” foliation of the space in an adaptive way and allow you to have
many different representation, depending on your ability of retriving a
good guess pathway.

Now that the system follows more closely the guess path you may
hope that, by performing a committor analysis on the TS this gives a
value of 0.5 and you can really trust your transitions state. Try to figure
out, from the Fig. 5.1, why you see all those pathways and how you
can ”map” them onto ramachandran plot so to double check if what
you see is just an effect of the projection of the states on the PCVs or
those pathways you see have an equivalent on the Ramachandran plot.
How is it possible that a periodic representation on the Ramachandran
plot is now ”unfolded” in a not periodic representation?

Finally, the cherry on the cake. Do a free energy with the usual com-
mand. sum hills -ndim 2 -ndw 1 2 -ngrid 100 100 -file HILLS

Before doing that, if you want to obtain meaningful results, you would
be better to increase deposition time and simulation time as well. Three
nanoseconds should be sufficient. The other way is to limit the path
on the distance along the path and then limit the exploration only to
the optimized region. This is reasonable as, for the reasons explained
before, the regions at large distance are not well resolved. In this case
we can still limit ourselves to just 100ps. A possible input can be
something like this:

69

Example.
The following is an example of input file for a free energy calculation along the path in a limited region of
the path itself.

PRINT W STRIDE 100

#

a rather rude metadynamics. do not take this as production conditions

#

HILLS W STRIDE 400.0 HEIGHT 0.4

#

the two path variables: metadynamics only on S PATH, the other is just for

monitoring

#

S PATH TYPE RMSD FRAMESET frame NFRAMES 12 LAMBDA 10300 SIGMA 0.25

Z PATH TYPE RMSD FRAMESET frame NFRAMES 12 LAMBDA 10300

#

A wall over Z can be useful to limit the orthogonal exploration and speed up

convergence

#

U WALL CV 2 LIMIT 0.0 KAPPA 100.0

#

additional ramachandran variables might be useful to understand what is happening

#

TORSION LIST 5 7 9 15

TORSION LIST 7 9 15 17

ENDMETA

At the end you can integrate simply with the usual command sum hills

-ndim 1 -ndw 1 -file HILLS you can retrieve the free energy file
fes.dat that you can easily plot with gnuplot and the command p

"./fes.dat" u 1:($2/4.186) w lp. Note that the factor 4.186 is
the kJoule to kcal conversion factor as the GROMACS internal energy
units (and therefore hills height) are in KJoule/mol. What can you
see? Can you compare with the free energy along the pink path in Fig.
5.1? Are you getting something you are expecting?

Now a final important remark . A very important point in un-
derstanding how to choose path collective variables is the choice of
the metrics. In PLUMED you have the choice between RMSD, DRMSD and
CMAP. However one can be tempted in simply producing an artificial
path via TARGETED and then using the frames as an input for pdbs for
the type RMSD. This is not always the best choice (very often it is not
at all). Consider carefully your problem. If you expect large entropic
basins probably something like CMAP is good for you as the degeneracy
does not increase so dramatically as function of the distance from the
path as for RMSD. The PLUMED developers team is working on a flexible

70

scheme for introducing a flexible scheme for adopting a complete flex-
ible metrics. A good reference could be [18] where we had to use two
different metrics depending on the transition that we wanted to do.

5.1.3 Path optimization

An important question is how to obtain and improve the reference
path. There are a number of ways to perform this task and a detailed
treatment goes far beyond the scope of this tutorial. Anyway it is
quite important to provide pointers to some relevant literature and
briefly discuss the main issues that one might encounter. Historically
path optimization was first performed in small molecules in electronic
structure calculations.

In this regime, if the number of atoms is small (around 10-20 atoms),
then it is possible to do a guided search on the potential energy surface
(PES) and find the saddle point. This is in generally not completely
automatic and requires some knowledge on the system to define some
”meaningful” set of additional coordinates (called ”redundant coordi-
nates”) that would increase the possibility of finding a saddle point on
the PES. The saddle point is defined as the point in the configurational
space that has zero force and whose Hessian matrix (the matrix of the
second derivatives of the energy respect to the positions) has positive
eigenvalues but one. That specific negative eigenvalues is associated to
an eigenvector that, when followed in two opposite directions, joins the
reactant and the product. This is a standard strategy that is based on
saddle point search and intrinsic reaction coordinate following which
is implemented in many codes, among which the popular Gaussian
code. However this approach has some severe limitations. First, when
scaling up the number of atoms (with a solvent layer), this procedure
becomes inefficient as many minima may interfere and the saddle point
search may be stuck on non-useful unreactive saddle points. Moreover
in this regime the free energy is hardly obtained with the rigid rotor ap-
proximation and many non-harmonic effect start to appear. similarly,
adding another redundant coordinate might be of limited help because
as the number of atoms increase, cooperatively starts to appear. These
issues have been addressed with the ”Nudged Elastic Band” (NEB)
[19, 20, 21] approach where many replica of the same system, each one
in a chain of guess states that go from the reactant to the product, are
evolved together and each replica is chained to the next replica by a

71

spring which keep each replica equidistant from the other (the so called
”re-parametrization force”).

It works well at T=0 K for chemical reaction. Here the trick is that
in this way the path is ”forced” to make the reaction and therefore one
can find the closest local minima to the input guess path thus avoiding
the situation in which the saddle point is found but it does not connect
reactant and products.
What about T>0 K? In the recent years many techniques were intro-
duced were the main task is, instead minimizing the path on the PES,
one wants to minimize the path using the FES. The best known is the
so-called ”Finite temperature string method” [22, 23, 24] . This tech-
nique can be easily implemented with PLUMED as it follows: create a
number of replicas of the system along the path and put some umbrella
on S PATH on the nodal points (say 1.0, 2.0, 3.0, etc. . .) and a U WALL

on
Z PATH so that each point does not escape dramatically. Then you

might collect configurations and average them so to extract a new path.
Re-parametrization requires some care and an ad-hoc code should be
written for reparametrizing each metrics (Cartesian coordinates require
optimal aliened in a correct way while angles require that correct peri-
odicity is applied). Please refer to [24]. Another technique I have been
applying is to use the NEB chain of springs [19, 20, 21] to produce an
additional reparametrizing force and then evolve in a steepest descent
fashion. For this approach please refer to [25].

Another possible approach is to performe a slow steered MD in slow
regime with a limit on Z PATH and then resorting the new frames from
the trajectory. However the path found can be suboptimal if you pull
too fast.

5.2 Variables for secondary structure in proteins

Many fundamental protein processes like folding, unfolding or misfold-
ing to a pathological form involve transformations of the secondary
structure. If we define the φ and ψ backbone dihedral angles as formed
by atoms (C1-N2-C2

α-C2) and (N1-C1
α-C1-N2) respectively, then alpha

secondary structure is localized in a region around (-60◦,-45◦) in the
(φ,ψ) Ramachandran plot, whereas beta is in a region around (-135◦,+135◦)
(see Fig. 5.4-a). Both alpha helix and beta sheet are characterized by

72

Figure 5.4: a) Ramachandran plot of backbone dihedral angles. b) structures
explored during a simulation on the Val20 peptide using the CVs ALPHARMSD
and ANTIBETARMSD.

hydrogen bonds between the backbone C=O and N-H groups of differ-
ent amino acid residues. In helices the hydrogen-bonded residue pairs
are of the type (i, i+ n), (i+ 1, i+ n+ 1), (i+ 2, i+ n+ 2), etc., where
n = 3, 4, or 5. Beta sheets are characterized by similar pairs as alpha
but with larger n (parallel beta) or by pairs (i, i+n), (i− 1, i+n+ 1),
(i− 2, i+ n+ 2), etc., with n > 4 (antiparallel beta). Further, the side
chains of neighboring amino acids have a typical stacking: in the alpha
helix they point outward, in the beta sheet they form pairs which are
alternatively above or below the sheet.

In Plumed there are several CVs which can induce changes of sec-
ondary structure based on the previous structural features: the H-
bonds (CVs COORD, HBONDS), the typical dihedrals (CVs TORSION, DIHCOR,
ALPHABETA), or the detailed chain conformation (CVs ALPHARMSD, ANTI/
PARABETARMSD). Here we will illustrate only the CVs ALPHABETA and
xRMSD. As protein model we consider a poly-valine peptide Val20 in vac-
uum (with ACE/NME capping groups, amber03 force field) as it allows
to obtain realistic secondary structure: valine has a volume which is
the average of all amino acids.

73

5.2.1 ALPHABETA

This CV measures the (approximate) number of backbone dihedral
angles which are similar to a given target angle [12, 26, 27]. Each
dihedral is specified by a set of four atom indexes followed by the target
angle. Here we consider the ψ dihedrals (which distinguish better than
φ between alpha and beta) defined by atoms (N1-C1

α-C1-N2), and a
reference value of -45◦ = −0.7854 rad which corresponds to alpha helix.
The CV value ranges between 19 (the number of ψ dihedrals in this
example) when all ψ = −45◦, down to 0 when all ψ = 135◦. Therefore
the CV is able to switch between all-alpha and all-beta structures:
in this example approximately 2 ns are needed for a complete loop,
but estimating the FES would require extended simulations due to the
complexity of the conformational space of a 20-amino acid peptide (i.e.
the number of possible structures is very large).

Example.
Input for secondary structure exploration in a Val20 peptide

5 kJ/mol (gromacs units) every 5 ps (timestep = 2 fs)

HILLS HEIGHT 5.0 W STRIDE 2500

PRINT W STRIDE 500

psi dihedrals: reference = -45 deg = -0.78540 rad

ALPHABETA NDIH 19 SIGMA 1.0

7 9 21 23 -0.78540

23 25 37 39 -0.78540

39 41 53 55 -0.78540

55 57 69 71 -0.78540

71 73 85 87 -0.78540

87 89 101 103 -0.78540

103 105 117 119 -0.78540

119 121 133 135 -0.78540

135 137 149 151 -0.78540

151 153 165 167 -0.78540

167 169 181 183 -0.78540

183 185 197 199 -0.78540

199 201 213 215 -0.78540

215 217 229 231 -0.78540

231 233 245 247 -0.78540

247 249 261 263 -0.78540

263 265 277 279 -0.78540

279 281 293 295 -0.78540

295 297 309 311 -0.78540

ENDMETA

74

5.2.2 ALPHARMSD and ANTIBETARMSD

This class of CVs counts the (approximate) number of 3+3-residue
blocks which are similar to the ideal alpha helix or beta sheet (i.e., to
the average experimental structures) [28]. The similarity with respect
to the ideal secondary structure is estimated by the root mean square
deviation between the distance matrices among backbone N, Cα, C,
O and Cβ atoms (this is equivalent to the root mean square cartesian
distance in ref [28]). These CVs are more efficient than the dihedral-
based ALPHABETA to observe the formation of beta sheets in explicit
solvent simulations of larger proteins.

75

Example.
Input for secondary structure exploration in a Val20 peptide

5 kJ/mol (gromacs units) every 5 ps (timestep = 2 fs)

HILLS HEIGHT 5.0 W STRIDE 2500

PRINT W STRIDE 500

with gromacs4+domain decomp. it’s important to use this:

ALIGN ATOMS LIST <secstr>

secstr->

N CA C O CB

7 9 21 22 11

23 25 37 38 27

39 41 53 54 43

55 57 69 70 59

71 73 85 86 75

87 89 101 102 91

103 105 117 118 107

119 121 133 134 123

135 137 149 150 139

151 153 165 166 155

167 169 181 182 171

183 185 197 198 187

199 201 213 214 203

215 217 229 230 219

231 233 245 246 235

247 249 261 262 251

263 265 277 278 267

279 281 293 294 283

295 297 309 310 299

311 313 325 326 315

secstr<-

0.1 = conversion from nm (gromacs) to angstrom (internal reference structures)

ALPHARMSD LIST <secstr> SIGMA 0.3 R 0 0.08 NN 8 MM 12 ANGSTROM SCALE 0.1 STRANDS CUTOFF

1. NOPBC

ANTIBETARMSD LIST <secstr> SIGMA 0.3 R 0 0.08 NN 8 MM 12 ANGSTROM SCALE 0.1

STRANDS CUTOFF 1. NOPBC

ENDMETA

In the latter input file the R 0, NN, MM parameters are optimized to
count ∼ 1 only if the structure is similar to the ideal one, while
STRANDS CUTOFF 1 limits the computation of the CVs to protein seg-
ments which are not farther than 1 nm from each other, for efficiency,
and finally NOPBC prevents the pairing of beta strands between peri-
odic replicas of the protein (even if in the present example the system
is isolated, without pbc). As a list of 20 residues is given in input, the
CV measures the total content of alpha or antiparallel beta secondary

76

structure in the protein, without telling the specific position in the
chain. Therefore e.g. a value of ALPHARMSD equal to 4 may correspond
to a short helix at the beginning, at the center, or at the end of the pro-
tein. By using several times the CVs for different chain segments it is
possible to localize the secondary structure in specific regions. In a few
ns different secondary structure elements can be observed (Fig. 5.4-b).
Estimating the FES, as explained above for ALPHABETA, would however
require extended simulations due to the complexity of the conforma-
tional space.

5.3 Potentials on a grid

As the simulation goes on, the computational time spent in the evalua-
tion of the metadynamics contribution to the forces becomes larger and
larger and eventually comparable with the time needed to calculate the
main forces in the MD code. This effect is particularly visible when
the system simulated is small or when using a simplified coarse-grained
potential.

A possible solution to this problem is storing an array containing the
current value of the bias potential (and of the derivatives with respect
to the CVs) on a grid. In this way the computational cost of meta-
dynamics becomes constant during the simulation. This corresponds
to the cost of evaluating a single Gaussian function on the whole grid
with a frequency given by the stride between subsequent hills.

In order to activate the grid in PLUMED, the directive GRID must be
specified for every collective variable CV. The keyword MIN and MAX are
used to fix the CV interval, NBIN the number of bins and the flag PBC

if the CV is periodic.
In working with grids, we use the following conventions:

• the actual number of bins created is NBIN + 1. For example, if
MIN is 0, MAX is 5 and NBIN is 5, the grid is made by 6 bins:
[0,1), [1,2), [2,3), [3,4), [4,5), [5,6).

• a point is aligned to the left. 0.999 belongs to [0,1) and 1.001 to
[1,2).

Special labels can be used in the definition of the interval with MIN

and MAX, such as -pi, +pi, +2pi, -2pi, pi, 2pi. These labels may
be particularly useful with the CVs ANGLE or TORSION.

77

Example.
In this example we run metadynamics using a dihedral angle as CV. The bias potential is put on a grid of
100 bins defined between −π and +π. The grid is periodic.

HILLS W STRIDE 1000 HEIGHT 0.4

WELLTEMPERED SIMTEMP 300 BIASFACTOR 8

TORSION LIST 5 7 9 15 SIGMA 0.35

GRID CV 1 MIN -pi MAX +pi NBIN 100 PBC

ENDMETA

As in standard metadynamics, a HILLS file containing the list of
Gaussians deposited is produced. This file is needed to restart a meta-
dynamics simulation also when GRID is used. Alternatively, one can
dump the grid of the potential on a file using the keyword WRITE GRID

and restart the simulation with READ GRID (see the manual).
Some rules to keep in mind:

• GRID must be activated (or switched off) on ALL the CVs;

• GRID can be used together with multiple walkers metadynamics,
bias-exchange and parallel tempering metadynamics;

• For an accurate calculation of the potential and forces, the bin
size must be smaller than half the Gaussian sigma. If a larger size
is used, the code will stop.

• If the simulation goes out of the grid, the code will stop. Please
increase MIN or MAX and restart metadynamics.

5.4 Reweighting techniques

From a converged metadynamics run we can calculate directly the
canonical probability distribution of the collective variables at a given
temperature. On the contrary, the statistics of other degrees of free-
dom is somehow distorted by the application, during the simulation,
of a time-dependent external potential on the CVs. Different possible
techniques have been proposed to reconstruct the probability distribu-
tion of variables other than the CVs. Here we describe two of them.

78

5.4.1 Well-tempered metadynamics calculations

In WT metadynamics, the reconstruction of the distribution of vari-
ables different from the CVs is particularly simple since for long times
the amount of bias added decreases to zero and the system becomes
closer and closer to equilibrium.

The algorithm described in Ref. [?] consists of three different steps:

1. Accumulate the histogram of the CVs plus the other variables of
interest between two updates of the bias potential;

2. When a new Gaussian is added, evolve the histogram following:

P (R, t+ ∆t) = e−β(V̇ (S(R),t)−〈V̇ (S,t)〉)∆t P (R, t), (5.9)

where P (R, t) is the biased probability distribution, V̇ (S(R), t)
the time derivative of the bias potential and the average in the
exponent is calculated in the biased ensemble;

3. At the end of the simulation, the unbiased distribution PB(R)
can be recovered from the histogram collected by using a standard
umbrella sampling reweighting:

PB(R) ∝ eβV (S(R),t) · P (R, t). (5.10)

Starting from PLUMED version 1.3, we will provide a code to perform
this (and other) kind of reweighting procedure. In this tutorial we are
presenting a beta version of reweight. Here is an example of typical
usage.

79

Example.
We performed a metadynamics run with 2 CVs and we are interested in reconstructing the distribution of
a third variable.

reweight -colvar COLVAR -hills HILLS -ncv 2 -nvar 3 -stride 1 -fes 3 -temp 300

-welltemp

-hills HILLS filename

-colvar COLVAR filename

-out FES filename

-ncv number of variables in HILLS

-nvar number of variables in COLVAR

-stride ratio between COLVAR and HILLS stride

-fes ID of the variables for FES in output

-temp temperature in Kelvin

-ngrid histogram grid dimension

-nreject discard initial steps

-timeout stride for FES printout

-pi ID of the variables with [−π; π] periodicity

-welltemp control for well-tempered metadynamics

-kjoule energy in kjoule/mol

The code needs two files with the same format of the PLUMED HILLS

and COLVAR files. In the latter, the metadynamics CVs should appear
in the first d column followed by the variables whose distribution one
wants to reweight. The ratio between the stride in COLVAR and HILLS

must be constant and greater than 1. The more data you have for the
histogram, the better.

Some important things to keep in mind:

• For the choice of the bin size, please follow the suggestions de-
scribed in section 3.5;

• Eq. 5.9 is exact. However, at the beginning of the simulation
the average of V̇ (S(R), t) can be calculated only approximately.
Luckily, a possible initial error is recovered for long times. Alter-
natively, one could discard the first part of the trajectory using
the -nreject option. Please always check that your results are
robust to a discard of initial parts of the trajectory;

• As for the calculation of the FES with sum hills, remember to
control the convergence by plotting the reconstructed distribution
at different times by using -timeout;

80

5.4.2 Weighted-histogram analysis of bias-exchange simula-
tions

As explained in Section 4.4, a bias-exchange metadynamics simulation
consists in a number N of replicas of the system, each one reconstruct-
ing a one-dimensional free-energy profile along a different CV. Instead
of having only N one-dimensional projections, it is much more insight-
ful to know the full N -dimensional free-energy landscape of the system,
which may resolve all the relevant minima and transition states. This
can be achieved by combining the data from all the bias-exchange repli-
cas into a suitable weighted-histogram technique [29].

The basic idea is the following: imagine to divide the N -dimensional
CV-space into a grid of small N -dimensional bins (Fig. 5.5). The prob-
ability of the states (= bins) visited along the trajectory is not given
by the Boltzmann equilibrium distribution because the simulation is
affected by the bias potential. Similarly to umbrella sampling, after
filling time the equilibrium probability of state α can be estimated as:

pi
α ≈

∑
t∈Ωi

α

eβ(V i(si
t)−f i) (5.11)

where i is the replica index, Ωi
α is the set of configurations of replica

i belonging to state α, si
t is the trajectory in CV-space, V i is the bias

potential (time-averaged after filling time), and f i is a shift constant.
Each replica which visited state α gives an estimate pi

α, and one can
make a weighted average of them to obtain the best overall probability
pα:

pα = C
∑

i

πi
αp

i
α (5.12)

where C is a normalization constant and the weights πi
α are computed

by minimizing the statistical error:

σ2(pi
α) = g

∑
t∈Ωi

α

e2β(V i(si
t)−f i) , σ2(pα) = C2

∑
i

(πi
α)2σ2(pi

α)(5.13)

πi
α =

eβ(f i−V̄ i
α)∑

j eβ(fj−V̄ j
α)

, eβV̄ i
α =

∑
t∈Ωi

α
e2βV i(si

t)∑
t′∈Ωi

α
eβV i(si

t′)
(5.14)

where g is the number of trajectory frames which are time-correlated
and the shift constants f i are determined self-consistently (see Ref. [29]

81

Figure 5.5: The three steps of the bias-exchange + weighted histogram
analysis method.

for details). Finally, the free energy is given by the usual formula
Fα = −kBT log pα. In this way, if the grid of bins is fine-grained, the
(discretized) N -dimensional free-energy landscape is reconstructed. A
scheme of the whole procedure is reported in Fig. 5.5.

As an example we consider the trajectories and Plumed output files
generated from the bias-exchange simulation on Ala3 in Section 4.4.
The simulation consisted of four replicas, therefore four atomic trajec-
tories, and each one reconstructed a one-dimensional free-energy profile
along a different backbone dihedral ψ1, φ1, ψ2, or φ2. To reconstruct
the fully-detailed four-dimensional free-energy landscape we employ the
VMD plugin bemeta analyzer.tcl, developed by Xevi Biarnes and
Alessandro Laio. The plugin reads the files traj0-3.xtc, COLVAR0-3,
and HILLS0-3. There must be a one-to-one correspondence between
each trajectory file and CVs file, e.g., each frame in traj0.xtc must
correspond to a line in COLVAR0 and viceversa. The plugin needs also
an input file cluster.in:

82

Example.
file cluster.in for bemeta analyzer.tcl:
KT 2.4943

HILLS FILE hills0

HILLS FILE hills1

HILLS FILE hills2

HILLS FILE hills3

GRO FILE start.gro

COLVAR FILE colvar0 traj0.xtc

COLVAR FILE colvar1 traj1.xtc

COLVAR FILE colvar2 traj2.xtc

COLVAR FILE colvar3 traj3.xtc

TRAJ SKIP 1

NCV 4

CVGRID 1 -3.14159 3.14159 10 PERIODIC

CVGRID 2 -3.14159 3.14159 10 PERIODIC

CVGRID 3 -3.14159 3.14159 10 PERIODIC

CVGRID 4 -3.14159 3.14159 10 PERIODIC

ACTIVE 4 1 2 3 4

T CLUSTER 500.

T FILL 500.

N MIN 1

DELTA 4

G CORR 1

REPR "all" "Licorice" "Name" "Opaque"

In this example kBT = 2.5 kJ/mol, an initial structure is given (start.gro),
no frames are skipped (TRAJ SKIP 1), the total number of CVs is 4,
for each CV a grid is defined by the minimum, maximum, and number
of subdivisions (periodicity, due to the nature of the dihedral CVs, is
asked for), the indexes of the active (biased) CVs in the COLVAR files is
given, the clustering and filling time are 500 ps and a preferred VMD
representation is selected. Further parameters are N MIN (minimum
number of visits of each bin to be considered reliable), DELTA (max-
imum allowed deviation between estimates of the free-energy profiles
in the first and second half of the trajectory), and G CORR (number of
time-correlated frames in the trajectory).

Finally, the plugin can be run from the TK console of VMD (open
it from the ”VMD Main” window, clicking on Extensions, Tk console):

Example.
source "bemeta analyzer.tcl"

::bemeta gui

83

Figure 5.6: Graphical interface of the VMD plugin bemeta analyzer.tcl.

The input file cluster.in is automatically read, and a graphical in-
terface opens (see Fig. 5.6).

The following two commands load the data into VMD (trajectories
and CVs). The fourth command subdivides the CV-space into a grid
of bins and assigns each frame of the trajectory to a bin (or cluster).
The last command calls the program wham on clusters newalign.x

which must be located in the same directory as all the input files. This
program estimates the free-energy of each bin (or cluster) as explained
above, writing it in the file CLUSTERS.FES:

84

Example.
the file CLUSTERS.FES: the columns are 1) the cluster index, 2) the population, 3,4,5,6) the 4 CVs
defining the centre, and 7) the free energy
1 10 -2.61799 -2.61799 0.52359 -2.61799 10.173

2 42 1.57079 -1.5707 -0.52359 -1.57079 4.305

3 35 -0.52359 -2.61799 -0.52359 -1.57079 5.224

4 23 -0.52359 -2.61799 0.52359 -2.61799 7.183

.....

(note that some states may have a free energy of 1000: this means that
due to poor statistics the free energy could not be assigned, and proba-
bly it is very high). This file contains therefore a discrete representation
of the four-dimensional free-energy landscape on a 10 × 10 × 10 × 10
grid. One can partially visualize the landscape, limited e.g. to the two
ψ dihedrals, with gnuplot:

Example.
set zrange [0:50]

set xlabel "psi1"

set ylabel "psi2"

set zlabel "F (kJ/mol)"

splot "CLUSTERS.FES" u 3:5:7

or with other combinations (4:5:7, 5:6:7, 4:6:7, etc.). The free-energy
landscape can be compared with the one obtained from a long (3 µs)
equilibrium MD simulation (see Section 4.4 and Fig. 4.5), in file EQUIL CLUSTERS.FES.
The script compare clusters.sh performs the comparison. Note that
the equilibrium MD has a poor sampling of the barrier regions, while
metadynamics has a good sampling, therefeore the agreement between
EQUIL CLUSTERS.FES and CLUSTERS.FES deteriorates at high free en-
ergy.

The plugin bemeta analyzer.tcl allows further to perform a ki-
netic clustering of the hundreds of states in file CLUSTERS.FES, by con-
structing an approximate kinetic transition matrix and analyzing its
spectrum. This procedure locates the free-energy basins (i.e. signif-
icant local minima, each one including many states). The detailed
explanation of this procedure is beyond the scope of this tutorial, and
the reader is referred to specific documentation. Only a rapid intro-
duction is given here. In short, the program kinetic basins.x must

85

be in the same directory, and the commands for bemeta analyzer.tcl

are the following:

Example.
run basins

build basins

show basins

At this point VMD visualizes the clusterized structure of the CV-space,
with basins as sets of small spheres of the same color, and basin at-
tractors (the centers of local free-energy minima) as bigger spheres. By
clicking on the key ”1” (picking mode) inside the VMD display, it be-
comes possible to select a state from the grid by left-clicking with the
mouse. The corresponding atomic configurations of Ala3 then appear.
To return to the CV-space representation it is sufficient to click on ”D”
in the VMD Main window for the label ”CLUSTERS.FES.BASINS”.

86

Chapter 6

Inside PLUMED

6.1 How to plug PLUMED in your MD code

In this part of the tutorial we will learn how to plug PLUMED in your
MD code.

The usual manner to patch PLUMED into a supported MD code is to
use the tools in the patches/ directory of PLUMED. These scripts are
slightly modifying the host MD code by:

• changing the original Makefile so as to compile also plumed source

• linking the plumed source code in the proper directory

• adding proper calls to PLUMED routines

The first two issues are very code dependent, and should be done in
an ad-hoc manner. We will focus here on the third issue. To provide
a working example, we will patch PLUMED on a simple Lennard-Jones
code written in basic FORTRAN. So, as a first step get the simplemd.tgz
code. It contains a src directory with source code and a xyz directory
with input files. Compile it and run it as follows

Example.
cd src
./compile
cd ../xyz
../src/simplmd.x < in

87

The MD code needs to call PLUMED routine for initialization (once
at the beginning of the simulation) and, at each step, to calculate the
forces coming from the bias. The two routines are mtd data init and
meta force calculation. Have a look to the common files/metadyn.c

file. You will find several versions of these routines, depending on which
host code is used. Instead of adding new routines, we will just adapt
the one used for AMBER. The reason is that AMBER is also written
in FORTRAN, and its interface is the simplest one.

We copy the plumed source in the src directory

Example.
cp PLUMED-ROOT/common files/*.c src/ cp PLUMED-ROOT/common files/metadyn.h src/

We change the compile script in such a way to compile also plumed
source. Notice that we have to tell to plumed the name of the host MD
code. For this example, since we are using the AMBER interface, we
add a -DAMBER compilation flag.

Example.
Compilation script:
gfortran -fdefault-real-8 -O2 -c *.f90
gcc -DPLUMED AMBER -O2 -c *.c
gfortran *.o -o simplemd.x -lm

At this point the code should compile without errors. Now we have
to set the proper calls to mtd data init and meta force calculation.

The first one should be called just after initialization. A good point
for this code is after velocity randomization

Example.
! velocities are randomized according to temperature
call randomize velocities(natoms,temperature,masses,velocities,idum)

CALL init metadyn(natoms,tstep,masses,masses,1,1.0D0,”plumed.dat”//char(0))

Notice that the interface is a bit cluttered because it is designed so
as to be used from many MD codes (QuantumEspresso, AMBER and

88

DLPOLY). The first argument is the number of atoms, followed by the
time-step, the array with the masses. Then we should have the charges
(we just set them equal to the masses since there are no charges in
LJ codes). The next argument indicates the type of pbc, followed
by energy units, and by the name of the plumed input (we leave it
hardcoded to plumed.dat).

The call to plumed forces should be put just after the call to LJ
forces:

Example.
call compute forces(natoms,listsize,positions,cell,forcecutoff,point,list,forces,engconf)
call meta force calculation(cell9,istep,positions,0,0,forces,0,0,engconf)

Notice here the two zeros following positions and forces. The reason
is that the interface is designed so as to be used also with DLPOLY,
where three different arrays are passed (x, y and z components).

6.2 How to add a new CV

In this part of the tutorial we will learn how to add a new CV to
PLUMED. Inside the code, every CV is identified by a unique name such
as DISTANCE, ANGLE or TORSION and by a numeric ID (see the manual
for a list). In the following we will call the new CV using the keyword
NEWCV and use the ID 0 when needed.

Adding a new CV to PLUMED consists of three main steps:

1. create a new file called restraint newCV.c. This file will contain
all the routines needed to parse the PLUMED input file and to cal-
culate the value of NEWCV and its derivatives with respect to the
coordinates of the system;

2. modify the PLUMED source code in a few places;

3. reapply the patch and recompile your MD code.

6.2.1 Creating restraint newCV.c

Let’s start by including the file that contains all the definition of rou-
tines and variables that are probably needed, namely metadyn.h.

89

The parser

The first important routine that must be defined in restraint newCV.c

is the parser, usually named read newCV. This routine will be called
by PLUMED when the main parser finds the keyword NEWCV in the input
file.

As far as parsing is concerned, there are two main types of CVs.
The majority of them needs to read only one line from the input file.
An example is ANGLE:

ANGLE LIST 11 13 17 SIGMA 0.35

It should be noted that this CV may be defined also in terms of
group of atoms, whose definition is given in another place of the PLUMED
input file:

ANGLE LIST 11 13 <CA> SIGMA 0.35

CA-> 3 7 10 CA<-

The parser for this kind of CVs is declared as:

int read angle (char **word,int count,t plumed input *input,

FILE *fplog);

where:

• **word contains the entire line of the input file that starts with
ANGLE;

• count is a CV counter;

• *input is a complex structure which contains all the PLUMED input
file;

• *fplog points to the PLUMED log file.

A few CVs need to read from the input file data with a syntax dif-
ferent from groups of atoms. To do so, we need to pass an additional
information to the parser. An example is RMSDTOR. This CV needs to
scan the input file for a list of atoms that defines a dihedral angle and
to read a reference value:

RMSDTOR NDIH 2 SIGMA 0.35

90

13 15 17 1 0.5

15 17 1 3 2.0

The parser for this kind of CVs is declared as:

int read rmsdtor (char **word,int count,t plumed input *input,int

*iline,FILE *fplog);

where *iline indicates the line of the input file that is currently
parsed. This variable is modified when scanning the rest of the input
file to get the additional data required by the CV.

Here we will focus on the first type of CVs. In the example box
below we show the essential lines of the ANGLE parsing routine.

Example.
Structure of a typical parsing routine.

int PREFIX read angle(char **word, int count, t plumed input *input, FILE *fplog){

int j, iw;

double delta = 0.0;

iw = seek word(word,"LIST");

if(iw>=0) {
j=plumed get group(word[iw+1],&colvar.cvatoms[count],colvar.natoms[count],input,fplog);

colvar.natoms[count]+=j;

colvar.list[count][0]=j;

j=plumed get group(word[iw+2],&colvar.cvatoms[count],colvar.natoms[count],input,fplog);

colvar.natoms[count]+=j;

colvar.list[count][1]=j;

j=plumed get group(word[iw+3],&colvar.cvatoms[count],colvar.natoms[count],input,fplog);

colvar.natoms[count]+=j;

colvar.list[count][2]=j;

} else { fprintf(fplog,"|- NEEDED LIST KEYWORD FOR ANGLE");}

iw=seek word(word,"SIGMA");

if(iw>=0){ sscanf(word[iw+1],"%lf", &delta);

colvar.delta r[count] = (real) delta; }

colvar.type s[count] = 4;

snew(colvar.myder[count], colvar.natoms[count]);

return colvar.natoms[count];

}

91

The example above shows some of the fundamental variables and
routines that are used in the parser:

• seek word looks for specific words in the parsed line;

• plumed get group is used to read a group of atoms;

• colvar.natoms is the total number of atoms used to define this
CV;

• colvar.cvatoms is the list of atoms used to define this CV;

• colvar.delta r is the Gaussian sigma;

• colvar.type s is the unique ID of the CV;

• colvar.myder will contain the derivatives of this CV with respect
to the coordinates of the atoms and must be initialized in the
parser routine.

CV definition and derivatives

The second important routine that must be included in restraint newCV.c

contains the mathematical definition of the CV and its derivatives and
it is usually called newCV restraint. The declaration of this routine
is common among all the CVs. Below is the example of the ANGLE

restraint.

Example.
void angle restraint (int i c, struct mtd data s *mtd data);

The variables that appear in the declaration of newCV restraint

are:

• i c, a CV counter;

• *mtd data, the fundamental structure of PLUMED that contains
data passed from the main MD code. These include positions,
masses and charges of all the atoms, information about the time
steps, temperature, unit of measure, periodic boundary conditions
and others.

92

The routine newCV restraint uses the information in mtd data

to calculate at every MD step the value of NEWCV and to store it in
the colvar.ss0[i c] variable. The derivatives with respect to all the
atoms involved must be also calculated and stored in the colvar.myder
array.

6.2.2 Modifying the PLUMED source code

Once the routines for parsing the new CV and calculating its value and
derivatives have been implemented, we need to modify the source code
to instruct PLUMED to call them at the right moment. To do so, we have
to act in a few selected spots:

1. we have to add the declaration of the new routines read newCV

and newCV restraint in the metadyn.h file;

2. in the read restraint.c file, we have to tell PLUMED to call
read newCV when the keyword NEWCV is found in the input file.
Here are the relevant lines for the ANGLE CV:

} else if(!strcmp(word[0],"ANGLE")){
read angle(word, count, &input, mtd data->fplog);

count++;

}

3. in the restraint.c file, we have to tell PLUMED to call newCV restraint

when appropriate. In the usual example of ANGLE CV, whose ID
is 4:

switch(colvar.type s[i c]){
...

case 4: angle restraint(i c, mtd data); break;

...

}

6.2.3 Final steps

Once the modifications to the PLUMED source code are done, we need
to reapply the patch and recompile the MD host code. After that, we
are ready to use our new CV.

93

Before starting a real calculation, it is better to check that we have
done everything correctly. The most frequent source of error is the
implementation of the analytical derivatives of the CV with respect
to the coordinates of the system. To detect possible errors, we can
use the keyword DEBUG. Before doing so, we have to manually add
NEWCV to the list of variables for which debugging is active. This list is
defined in the file testderivatives.c together with the routines for
comparing the analytical derivatives of a CV to the value calculated
with finite differences. These routines call newCV restraint several
times to calculate the CV value for different atoms positions. Have a
look at testderivatives.c and add all the calls to newCV restraint

that are needed, following the usual example of angle restraint!

94

Chapter 7

Real life applications

7.1 The Stone-Wales transformation in a carbon
nanotube

As an example of an activated process in a condensed matter system we
consider the Stone-Wales transformation in a carbon nanotube. This
transformation can be seen as the rotation of a C-C dimer by 90◦,
which leads to the conversion of four hexagons into two pentagons and
two heptagons. During the process, which has been observed e.g. in
nanotubes subject to strain, overall two covalent bonds are broken and
two are formed, resulting in a large energy barrier of several eV. Here
we consider a 480-atoms (10,0) carbon nanotube periodically repeated,
and we adopt the AIREBO interatomic potential as implemented in
lammps. One can imagine different suitable reaction coordinates for
the Stone-Wales transformation. Here we use the number of covalent
three-atoms bridges among different groups of atoms, as detailed in
Fig. 7.1. Rotation of the C-C dimer leads to breaking of two ”vertical”
bridges and to forming two ”horizontal” bridges. A suitable Plumed
CV is WATERBRIDGE (the name water has only historical sense since the
CV was originally implemented to count the H-bonded bridges formed
by water molecules between two protein surfaces).

95

Example.
input file for the Stone-Wales transformation in a carbon nanotube with lammps

0.4 eV (lammps "metal" units) every 50 fs (timestep = 1 fs)

HILLS HEIGHT 0.4 W STRIDE 50

PRINT W STRIDE 10

WATERBRIDGE LIST <hor1> <hor2> <dimer> R 0 1.9 NN 8 MM 20 SIGMA 0.2

hor1->

229 259

hor1<-

hor2->

226 256

hor2<-

dimer->

238 248

dimer<-

WATERBRIDGE LIST <ver1> <ver2> <dimer> R 0 1.9 NN 8 MM 20 SIGMA 0.2

ver1->

256 259

ver1<-

ver2->

226 229

ver2<-

ENDMETA

Within 10 ps of simulation, the Stone-Wales transformation oc-
curs reversibly multiple times, and a FES can be reconstructed with
sum hills:

Example.
generate FES file fes.dat:
sum hills.x -file HILLS -out fes.dat -ndim 2 -ndw 1 2

plot FES with gnuplot:
set pm3d

set contour base

splot ’fes.dat’ with pm3d

7.2 A SN2 reaction in vacuum with quantum espresso

This section will show a simple chemical reaction example done with
QUANTUM ESPRESSO code. This code is meant here to do Born-
Oppenheimer dynamics but PLUMED is also implemented to work in

96

Figure 7.1: a) Definition of the groups of atoms in the input file. b)
Reversible Stone-Wales transformation during the simulation with the CV
WATERBRIDGE. c) reconstructed FES after deposition of 400 hills.

97

Figure 7.2: A sketch of SN2 reaction

the Car-Parrinello module of the suite. The goal of the exercise is to
calculate the free energy for the reaction depicted in 7.2. This reaction
has been studied before [30] and here we will try to sketch out the
barriers but the aim is to take a short amount of time. In the PW code
input (file bo.in) PLUMED is activated with the flag use plumed=.true.

in the control section then the code expects a plumed.dat file.

&control

title = ’ch3cl’,

calculation=’md’

restart_mode=’from_scratch’,

pseudo_dir = ’.’,

outdir=’.’,

dt=20,

nstep=2000,

disk_io=’low’,

prefix = ’md’,

use_plumed = .true.,

/

Pay attention: in this code distances are in Bohr (1 Bohr = 0.529177249
Å) and the energies in Rydberg (1 Ry= 313.755 kcal/mol).

Now you have to choose what to do at this stage. You have first a
bunch of techniques available.

• Metadynamics? Can be an option but you have a fixed small
amount of time available here. And you don’t know how much it

98

will take to make a single event but you also might have multiple
recrossing.

• Thermodynamic integration (In the steered-md flavour). Efficient
and guaranteed to make the reaction but no average on multiple
recrossing events. And what about the dissipative work? Here
you don’t have many orthogonal degrees of freedom. Probably
could work.

• Umbrella Sampling. Similar problems to TI, with the exception
that the work are calculated at equilibrium. No problem with
dissipative work.

And the second thing that you should decide is the CV to be used.

• Distances?

• Path ? (probably is overshooting?

• Does the angle matters?

• Coordination number?

• Anything else?

For Metadynamics a possible input can be

Example.
switching on metadynamics and Gaussian parameters

HILLS HEIGHT 0.001 W STRIDE 2

instruction for CVs printout

PRINT W STRIDE 1

the distance between C-Cl’ and C-Cl

DISTANCE LIST 1 3 SIGMA 0.3

DISTANCE LIST 2 3 SIGMA 0.3

#WALLS: prevent to depart the two mols

UWALL CV 1 LIMIT 7.0 KAPPA 100.0

LWALL CV 1 LIMIT 2.5 KAPPA 100.0

UWALL CV 2 LIMIT 7.0 KAPPA 100.0

LWALL CV 2 LIMIT 2.5 KAPPA 100.0

end of the input

ENDMETA

Here two independent variable on a range are used. A possible other
input (case of steered md):

99

Example.
instruction for CVs printout

PRINT W STRIDE 1

the distance between C-Cl’ and C-Cl

DISTANCE LIST 1 3 DIFFDIST 2 3

STEER CV 1 TO 2.35 VEL 2.50 KAPPA 0.5

end of the input

ENDMETA

Example.
instruction for CVs printout

PRINT W STRIDE 1

the distance between C-Cl’ and C-Cl

DISTANCE LIST 1 3 DIFFDIST 2 3

DISTANCE LIST 1 2

STEER CV 1 TO 2.35 VEL 2.50 KAPPA 0.5

UWALL CV 2 LIMIT 8.7 KAPPA 0.5

end of the input

ENDMETA

In this other option you use one single cv and you keep a wall on
the other. Which are the advantages/disadvantages? One variable is
faster but you don’t know where and how much the wall is affecting
your simulation. Is there any way to calculate and address this issue?
You can run the job like this

source /usr/local/Modules/3.2.6/init/bash

module load intel-cc/10.1.015

module load intel-fc/10.1.015

module load intel-mkl/10.0.1.014

module load openmpi/1.2.6_intel-10.1.015

PATH_TO_ESPRESSO=/my/path/to/espresso

mpirun -np 4 $PATH_TO_ESPRESSO/espresso-4.2.1/PW/pw.x < bo.in > bo.out

Choose one of those two technique and run the calculation. Use sum hills

or the awk script to calculate the work (in the steering example) to cal-
culate the energy profile.

100

7.3 Folding of the GB1 C-terminal β–hairpin

In this part of the tutorial, we will use PLUMED in combination with
GROMACS to study the folding process of a small peptide, the C-
terminal domain of protein GB1 [?, 31]. This 16-residue peptide is
a prototypical example of β–hairpin structure (see Fig. 7.3) which
has attracted the attention of both the experimental and theoretical
community in the recent years.

Figure 7.3: Structure of the C-terminal domain of protein GB1. In violet,
the residues that define the turn region.

A variety of computational methods and models for the protein and
the water force fields, together with a number of different descriptors
have been used in those works aimed at characterizing the folding land-
scape of this peptide [?, ?, ?, ?, ?, ?, 18, ?]. In particular, among the
CVs used are:

101

• Number of hydrogen-bonds;

• Backbone radius of gyration;

• Hydrophobic core radius of gyration;

• RMSD;

• ASA;

• Principal components;

• Path Collective Variables;

• Contact maps.

In this exercise, we will experiment with different collective variables
and free-energy methods. We will simulate the hairpin in vacuum using
the OPLS-AA [32] force field. More precisely, in this exercise you
should combine many of the techniques learnt in this tutorial and:

1. Choose a limited number of CVs;

2. Choose a free-energy method;

3. Restrict the turn region to simplify the problem;

4. Monitor the RMSD of the protein from the native state to see if
the peptide is correctly refolding;

5. Monitor the convergence of your calculation;

6. Calculate and analize the FES.

Here is an example of PLUMED input file with some of the CVs that
can be used to address this problem.

102

103

Example.
PRINT W STRIDE 500

choose your free-energy method

HILLS W STRIDE 500 HEIGHT 0.2

if you choose metadynamics, try to use GRID

GRID CV 1 MIN 0 MAX 10 NBIN 100

CHOOSE YOUR CVs or create your own

number of native CA contacts

CMAP INDEX CMAP native.CA

total number of CA contacts

CMAP INDEX CMAP all.CA

RMSD**2 from native structure calculated on CA

TARGETED TYPE RMSD FRAMESET hpin native CA.pdb

RMSD**2 from native structure calculated on backbone

TARGETED TYPE RMSD FRAMESET hpin native BACKBONE.pdb

number of hbonds

TYPE means

0 ALL

1 BETA ODD

2 ALPHA

3 BETA EVEN

4 NATIVE (like PAIR coordination)

5 BETA ALL

HBONDS LIST <H> <O> TYPE 1

H->

15 30 54 68 89 101 113 123 137 159 173 193 207 223

H<-

O->

28 52 66 87 99 111 121 135 157 171 191 205 221 235

O<-

radius of gyration of the hydrophobic core

RGYR LIST <HC>

HC->

29 31 33 36 37 39 40 42 43 45 47 49 51 52

67 69 71 74 75 77 79 81 83 84 86 87 172 174 176 179 180

182 184 186 188 190 191 206 208 210 212 216 220 221

HC<-

CA radius of gyration

RGYR LIST <CA>

CA->

9 16 31 55 69 90 102 114

124 138 160 174 194 208 224 238

CA<-

you may want to keep the turn formed

TARGETED TYPE RMSD FRAMESET hpin native TURN.pdb

UWALL CV 2 LIMIT 0.01 KAPPA 5000000.0 EXP 2.0

ENDMETA

104

Bibliography

[1] C. Jarzynski, Nonequilibrium equality for free energy differences,
Phys. Rev. Lett. 78 (1997) 2690–2693.

[2] P. Bolhuis, C. Dellago, D. Chandler, Reaction coordinates of
biomolecular isomerization, P Natl Acad Sci Usa 97 (11) (2000)
5877–5882.

[3] L. Maragliano, A. Fischer, E. Vanden-Eijnden, G. Ciccotti, String
method in collective variables: Minimum free energy paths and
isocommittor surfaces, J. Chem. Phys. 125 (2) (2006) 024106.

[4] W. Ren, E. Vanden-Eijnden, P. Maragakis, W. E, Transition path-
ways in complex systems: Application of the finite-temperature
string method to the alanine dipeptide, J. Chem. Phys. 123 (13)
(2005) 134109.

[5] B. Peters, p(tp—q) peak maximization: Necessary but not suffi-
cient for reaction coordinate accuracy, Chemical Physics Letters
494 (1-3) (2010) 100–103.

[6] B. Peters, B. L. Trout, Obtaining reaction coordinates by like-
lihood maximization, The Journal of chemical physics 125 (5)
(2006) 054108.

[7] B. Peters, Using the histogram test to quantify reaction coordinate
error, The Journal of chemical physics 125 (24) (2006) 241101.

[8] A. Laio, A. Fortea-Rodriguez, F.Gervasio, M. Ceccarelli, M. Par-
rinello, Assessing the accuracy of metadynamics, J. Phys. Chem.
B 109 (2005) 6714–6721.

105

[9] G. Bussi, A. Laio, M. Parrinello, Equilibrium free energies from
nonequilibrium metadynamics, Phys Rev Lett 96 (9) (2006)
090601.

[10] P. Raiteri, A. Laio, F. Gervasio, C. Micheletti, M. Parrinello, Effi-
cient reconstruction of complex free energy landscapes by multiple
walkers metadynamics, J. Phys. Chem. B 110 (2006) 3533–3539.

[11] G. Bussi, F. L. Gervasio, A. Laio, M. Parrinello, Free-energy land-
scape for beta hairpin folding from combined parallel tempering
and metadynamics, J. Am. Chem. Soc. 128 (41) (2006) 13435–41.

[12] S. Piana, A. Laio, A bias-exchange approach to protein folding, J.
Phys. Chem. B 111 (17) (2007) 4553–9.

[13] P. Cossio, F. Marinelli, A. Laio, F. Pietrucci, Optimizing the per-
formance of bias-exchange metadynamics: Folding a 48-residue
lysm domain using a coarse-grained model, J. Phys. Chem. B 114
(2010) 3259–3265.

[14] A. Laio, F. L. Gervasio, Metadynamics: a method to simulate rare
events and reconstruct the free energy in biophysics, chemistry and
material science, Rep. Prog. Phys. 71 (2008) 126601.

[15] Y. Crespo, F. Marinelli, F. Pietrucci, A. Laio, Metadynamics con-
vergence law in a multidimensional system, Phys. Rev. E 81 (2010)
055701(R).

[16] J. Juraszek, P. G. Bolhuis, Sampling the multiple folding mecha-
nisms of the trp-cage miniprotein in explicit solvent, Biophys. J.
(2007) 214A–214A.

[17] S. K. Kearsley, On the orthogonal transformation used for struc-
tural comparison, Acta Cryst. A 45 (1989) 208–210.

[18] M. Bonomi, D. Branduardi, F. Gervasio, M. Parrinello, The un-
folded ensemble and folding mechanism of the C-terminal GB1 β
hairpin, J. Am. Chem. Soc. 130 (42) (2008) 13938–13944.

[19] H. Jonsson, G. Mills, K. W. Jacobsen, Nudged elastic band method
for finding minimum energy paths of transitions, World Scientific,
1998.

106

[20] G. Henkelman, H. Jonsson, Improved tangent estimate in the
nudged elastic band methid for finding minimum energy paths
and saddle points, J. Chem. Phys. 113 (2000) 9978–9985.

[21] G. Henkelman, B. P. Uberuaga, H. Jonsson, A climbing image
nudged elastic band method for finding saddle points and mini-
mum energy paths, J. Chem. Phys. 113 (2000) 9901–9904.

[22] W. E, W. Ren, E. Vanden-Eijnden, Finite temperature string
method for the study of rare events, J. Phys. Chem. B 109 (2005)
6688–6693.

[23] W. Ren, E. Vanden-Eijnden, P. Maragakis, W. E, Transition path-
ways in complex systems: Application of the finite-temperature
string method to the alanine dipeptide, J. Chem. Phys. 123 (2005)
134109.

[24] L. Maragliano, A. Fischer, E. Vanden-Eijnden, String method in
collective variables: minimum free energy paths and isocommittor
surfaces, J. Chem. Phys. 125 (2006) 024106.

[25] D. Branduardi, F. L. Gervasio, M. Parrinello, From A to B in free
energy space, J. Chem. Phys. 126 (5) (2007) 054103.

[26] S. Piana, A. Laio, F. Marinelli, M. V. Troys, D. Bourry, C. Ampe,
J. H. C. Martins, Predicting the effect of a point mutation on a
protein fold: The villin and advillin headpieces and their pro62ala
mutants, J. Mol. Biol. 375 (2) (2008) 460 – 470.

[27] N. Todorova, F. Marinelli, S. Piana, I. Yarovsky, Exploring the
folding free energy landscape of insulin using bias exchange meta-
dynamics, J. Phys. Chem. B 113 (2009) 3556–3564.

[28] F. Pietrucci, A. Laio, A collective variable for the efficient explo-
ration of protein beta-structures with metadynamics: application
to sh3 and gb1, J. Chem. Theory Comput. 5 (9) (2009) 2197–2201.

[29] F. Marinelli, F. Pietrucci, A. Laio, S. Piana, A kinetic model of trp-
cage folding from multiple biased molecular dynamics simulations,
PLoS Comput. Biol. 5(8) (2009) e100045.

107

[30] S. Yang, P. Fleurat-Lessard, I. Hristov, T. Ziegler, Free energy
profiles for the identity s(n)2 reactions cl-+ch3cl and nh3+h3bnh3:
A constraint ab initio molecular dynamics study, J Phys Chem A
108 (43) (2004) 9461–9468.

[31] V. Muñoz, P. A. Thompson, J. Hofrichter, W. A. Eaton, Fold-
ing dynamics and mechanism of beta-hairpin formation, Nature
390 (6656) (1997) 196–9.

[32] R. Friesner, J. Tirado-Rives, W. Jorgensen, Evaluation and
reparametrization of the opls-aa force field for proteins via com-
parison with . . . , JOURNAL OF PHYSICAL CHEMISTRY B.

108

Index

Keywords
AT, 25
CMAP, 60, 63, 70
CV, 25, 29
DRMSD, 60, 63, 70
ENDMETA, 15
GRID, 77, 78
KAPPA, 25, 29, 33
LAMBDA, 61, 66–68
LIMIT, 33
LIST, 15
LWALL, 23, 32, 33
PRINT, 15
READ GRID, 78
RMSD, 60, 63, 65, 66, 70
RST, 25
STEERPLAN, 23, 30, 31
STEER, 27, 29
S PATH, 65, 72
TARGETED, 29, 70
TO, 29
TYPE, 65
UMBRELLA, 23, 25, 33
UWALL, 23, 32, 33
U WALL, 72
WRITE GRID, 78
W STRIDE, 15
Z PATH, 65, 72

109

	Compilation
	PLUMED compilation
	Compile PLUMED with GROMACS
	Compile PLUMED with QUANTUM ESPRESSO
	Compile PLUMED with LAMMPS

	Basics: monitoring simulations
	Syntax for collective variables
	Monitoring a CV
	Postprocessing with driver

	Basics: biasing simulations
	Restrained/steered molecular dynamics
	An umbrella sampling calculation. Alanine dipeptide.
	A steered molecular dynamics example: targeted MD.
	A programmed steered MD with steerplan.
	Soft walls

	Committment analysis
	Metadynamics
	Restarting metadynamics
	Free-energy reconstruction
	Well-tempered metadynamics

	Parallel machines
	Exploiting MD parallelization
	Multiple-walkers metadynamics
	Parallel-tempering metadynamics
	Parallel tempering
	The best from both worlds

	Bias-exchange metadynamics
	Convergence of the simulation

	Advanced techniques
	Path based collective variables
	Metadynamics on a sub-optimal path
	Metadynamics on a correct path
	Path optimization

	Variables for secondary structure in proteins
	ALPHABETA
	ALPHARMSD and ANTIBETARMSD

	Potentials on a grid
	Reweighting techniques
	Well-tempered metadynamics calculations
	Weighted-histogram analysis of bias-exchange simulations

	Inside PLUMED
	How to plug PLUMED in your MD code
	How to add a new CV
	Creating restraint_newCV.c
	Modifying the PLUMED source code
	Final steps

	Real life applications
	The Stone-Wales transformation in a carbon nanotube
	A SN2 reaction in vacuum with quantum espresso
	Folding of the GB1 C-terminal --hairpin

