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Uncertainty estimation in computational chemistry Introduction

CC-UQ validation practices iCO@universite

PARIS-SACLAY

o Qualitative appreciation of conformity between PU and errors amplitude
o visual check of normality of z-scores histogram®
o visual estimation of local coverage of 95% prediction interval (PI)?

o Statistical estimation
o coverage of 95% prediction intervals®
o correlation of uncertainty and absolute errors®
o calibration/sharpness (for CC-applied ML methods)®

We need a consistent and shared validation framework !

!Mortensen et al. (2005) Phys. Rev. Lett. (https://tinyurl.com/mvwk3fff)

2Bakowies and von Lilienfeld (2021) JCTC (https://tinyurl.com/ms3dy7yv)

3Pernot et al. (2015) J. Chem. Phys. (https://tinyurl.com/3c9aw28r), Proppe & Kircher (2022)
ChemPhysChem (https:/ /tinyurl.com /yckxvjkk)

*Zheng et al. (2022) J. Phys. Chem. Lett. (https://tinyurl.com/ccefk79z)

Tran et al. (2020) Mach. Learn.: Sci. Technol (https://tinyurl.com/2p849fs6), Scalia et al. (2020) J .
Chem. Inf. Model. (https://tinyurl.com/yc7rn7dp)
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Uncertainty estimation in computational chemistry Introduction

Uncertainty vs error® ij@unlverSIté.

PARIS-SACLAY

In order to estimate a measurement uncertainty it is assumed that
the result of a measurement has been corrected for all recognized
significant systematic effects and that every effort has been made to
identify such effects.

systematic error uncertainty

component of measurement error non-negative parameter characterizing
that remains constant or varies the dispersion of the quantity values being
in a predictable manner attributed to a measurand

random error .
@ often estimated by a standard

component of measurement error deviation u, or the half-width of a
that varies in an unpredictable manner probability interval U,

% Guide to the expression of uncertainty in measurement (GUM), JCGM 100:2008, International Vocabulary
of Metrology (VIM), JCGM 200:2012
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Uncertainty estimation in computational chemistry Introduction

Error sources in Computational Chemistry? 1CD@unwversite

PARIS-SACLAY

@ Numerical errors
o finite arithmetics, stochastic algorithms. ..

o mostly random errors; assumed to be well controlled”,
except for numerical chaos®

o Parametric uncertainty
e semi-empirical methods, statistical corrections. ..

o random errors; decrease with size of calibration set

o Model errors

o level-of-theory errors (density functional approximation, correlation level,
force-field expression. .. ), representation errors (basis-sets, grids). ..

e mostly systematic errors; often the dominant error source;
no reason to be normally distributed

"lrikura et al. (2004) Metrologia 41:369
8Feher and Williams (2012) J. Chem. Inf. Model. 52:3200-3212
9Lejaeghere (2020) Uncertainty Quantification in Multiscale Materials Modeling, pp. 41-46
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Uncertainty estimation in computational chemistry Introduction

CC-UQ outputs ij@unlversmé.

PARIS-SACLAY

@ Prediction distributions or representative samples

o available for some methods (Stochastic methods,
Statistical models, Bayesian Ensembles. . .)

@ Most UQ studies in the CC literature provide statistical summaries:
o expanded uncertainties (U, typically for p = 0.95)

o standard uncertainties (u)

Note: no prediction interval without distribution hypothesis

Ruscic (2014) Int. J. Quantum Chem. 114:1097
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Prediction uncertainty validation framework Notations

Validation data sets iC’Q@unlverSIté.
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Let us consider a typical validation set
@ V; : predicted value at pointi € 1: M
@ wuy, : uncertainty on V; (model uncertainty)
@ R, : reference value

@ up, : uncertainty on R; (data uncertainty)

Validation is based on

e ;= R; —V; : error / prediction error

o for standard uncertainties up, = ,/u%,y + u%i (prediction uncertainty)

Prediction uncertainty quantifies the dispersion of pred. errors
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Prediction uncertainty validation framework

Visual appreciation

Do the errors scale with uncertainty ?

Simple graphics

. L]
ICP @ universite

Q if ug # !¢, plot E vs up and guiding lines y = k * x
Q if up = ', plot F/ug (2-score) vs V and guiding lines y = k
@ as helper, plot running quantiles (Clgs)

Data
—— Quantiles

0.00 0.05 0.10

Error, E

-0.10

UE=0.01(1+V"2); E~N(O,uE)

Prediction Uncertainty, ug
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Same E, but uE=sd(E)
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Prediction uncertainty validation framework Calibration validation

The Calibration/Sharpness framework'? icp@unversite
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Calibration a method is considered to be calibrated if the confidence
of predictions matches the probability of being correct for
all confidence levels

Sharpness the concentration of a predictive distribution in absolute terms.
Conditional to calibration

Pb: sharpness is a property of the forecast alone and does not
involve the observations.
— useful in benchmarking, not in validation. ..

Tightness'! a method is considered to be tight if it is calibrated
for any relevant subgroup of the validation data
(small-scale calibration)

HPpernot (2022) (https://arxiv.org/abs/2204.13477)
12Gneiting et al. (2007) Stat. Meth. B (https://tinyurl.com/2p8nr3ab)
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Prediction uncertainty validation framework Calibration validation

Limits of average calibration iICO@université
@ Average calibration does not guarantee tightness

e in benchmarking, sharpness is used to select tighter forecasts

@ Stronger calibration modes have been introduced:

o group calibration'® where calibration is assessed
on relevant subgroups of the validation dataset

o adversarial group calibration’* where calibration is assessed
on any random group of useful size

o perfect calibration®®

o | propose to use local calibration, a variant of group calibration,
where the validation set is split into contiguous areas of a chosen
coordinate (predicted value, prediction uncertainty. . .)

13Chung et al. (2021) arXiv:2109.10254; Hébert-Johnson (2017) arXiv:1711.08513
1Zhao (2020) arXiv:2006.10288
15| evi et al. (2020) (http://arxiv.org/abs/1905.11659)
Pascal PERNOT (ICP) Validation of Prediction Uncertainty in Computational CECAM (2022-06-22) 10/28


https://arxiv.org/abs/2109.10254
https://arxiv.org/abs/1711.08513
https://arxiv.org/abs/2006.10288
http://arxiv.org/abs/1905.11659

Prediction uncertainty validation framework  Average calibration

Different validation approaches® iCO@universite

PARIS-SACLAY
o Interval-based °
hm Zl (EB; €Ig,,) =p, Vpel0,1]

where I, ,, is a prediction interval at probability level p

e Variance-based 7
Var (Eluf, = 0%) = ¢°, Vo

which does not operate at the same level as interval-based validation

o Note: ranking-based methods (correlation between uy and |E|; confidence
curves) cannot validate calibration/tightness, but can invalidate tightness. ..

®Kuleshov et al. (2018) (http://arxiv.org/abs/1807.00263)
Tl evi et al. (2020) (http://arxiv.org/abs/1905.11659)
8Scalia et al. (2020) J . Chem. Inf. Model. (https://tinyurl.com/yc7rn7dp), Pernot (2022) _J. Chem.
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Prediction uncertainty validation framework  Average calibration

Interval-based validation iCO@universite
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An expanded uncertainty is the half-width of a prediction interval

I, p = [-Ug:p, Ug, p]
To validate Ug ,, one should therefore test
; M
p € Ios(vp, M), where v, = i ]Z; 1(|E| <Upy)

and v, is a PICP (Prediction Interval Coverage Probability)

@ Iy5(v,, M) (Binomial Proportion Cl) is estimated by a method avoiding
normality hypothesis (Clopper-Pearson, cc-Wilson, Agresti-Coull. .. )

Vollset (1993) Stat. Med. (https://tinyurl.com/5dps8u3h)
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Prediction uncertainty validation framework  Average calibration

Variance-based validation iCO@universite

PARIS-SACLAY

Let us consider unbiased errors of unknown distribution
E(E;) = 0; Var(E;) = uf,
Then for zscores z; = E;/up, one has
E(z;) =0; Var(z;) =1
and for a set of zscores Z = {2},
E(Z)=0; Var(Z2) =1

To validate Var(Z), one should therefore test

1 € Ios (Var(Z), M)

@ Ios (Var(Z), M) is estimated by an adapted bootstrap method (BC,, ABC...)%
to avoid the normality-based textbook method

Diciccio and Effron (1996) Stat. Sci. (https://tinyurl.com/ssztxy6k)
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Prediction uncertainty validation framework  Tightness

How to test tightness ? iCO@universite

@ Proposed approach: interpret tightness as local calibration
and use calibration tests on subsets of the validation set
wrt V or uFE (or any other relevant property)

o LCP analysis: local PICP estimation and test

o LZV analysis: local zscores variance testing

@ Pb: partitioning reduces sample size (bad for test power)
— use overlapping/sliding areas for small datasets.
Trends in LCP-LZV curves help diagnostic.

e Link of LZV/uE with perfect calibration (reliability diagram, RD)?!
Var (E|u}, = 0%) = 02, Vo?

but RD does not deal with homoscedastic datasets.

2 evi et al. (2020) (http://arxiv.org/abs/1905.11659)
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Prediction uncertainty validation framework ~ Summary

Overview iCp@unlverché.

PARIS-SACLAY

Diagnostic Applicability Validation

qg  Ug Ugp Homose. Heterose.  Calibrat. Tightness

Average
PIT hist. X
Calib. curve X
PICP X
Var(Z) X X
Cor(ug,|E|) X X X*
Local
LCP/LRR X t
LZV X y al
Reliab. diag. X X y /1
Confid. curve X y X X*
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Examples from the CC literature PRO2022

Reactivity Scales® iCO@universite

PARIS-SACLAY

Set of 212 errors for reaction rates by an extended Mayr's reactivity scale and
Uygs values obtained by two UQ methods (a and b).

Model a Model b

— Data
Quantiles .*

— Data
Quantiles

0.2 04 0.6
0.2 04 0.6

E
2
|
E
2

T T T T T T T T - T - T
0.05 0.10 0.20 0.50 1.00 0.05 0.10 0.20 0.50 1.00
u9s u9s

2Proppe & Kircher (2022) ChemPhysChem (https://tinyurl.com /yckxvjkk)
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Examples from the CC literature PRO2022

Reactivity Scales®® iCO@universite

PARIS-SACLAY

Ugs — interval-based validation

° Model a ° Model b

S Mean S p——— N Mean
> - 0.995(5) > |- 0.995(5)
= - case - o z o
8 5o flemm—— ] S qus| -[EES{ERISEISES— |
S o S o
a a
L O L O
oD o oD O
g o g IS
3 i 2
O ® O o
w® © © ©
8 8
24 g | - pos -8 =P

S T T T T T S T T T T T

0.05 0.20 0.50 0.05 0.20 0.50
u9s u95

@ large local uncertainties because of small groups

@ for overestimated uncertainties, the PICP test saturates at 1

BProppe & Kircher (2022) ChemPhysChem (https://tinyurl.com /yckxvjkk)
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Examples from the CC literature PRO2022

i 5 ICo@uymyerse
/ universite
Reactivity Scales
o LRR analysis o Confidence curve
—e— Model a -
—— Model b ®

0 — <
o ° \
& 2o
o ] < o] \
c = \
g ‘ E < \\
= < < ~
8 = e \\
S ¢ S

Nfi&‘ é g— - - Oracle <

SR IPOL Ay PO S ®  Model a S .
° o | — Model b RN
© 7 T T T T =] T T T T
0.05 0.10 0.20 0.50 1.00 0 20 40 60 80 100
u9s k% discarded

o Range Ratio : Mean width of pred. int. / Width of error proba. int.

@ even if calibration is rejected, on might reliably use these uncertainties
for active learning (Conf. curves)

*Proppe & Kircher (2022) ChemPhysChem (https://tinyurl.com /yckxvjkk)
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Examples from the CC literature BAK2021

ZPE by the ATOMIC-2 composite method? ICO@ université

PARIS-SACLAY

A-posteriori estimation of Ugs based on a correlation of errors
with the fraction of heteroatoms in a molecule.

@ Small test dataset: M = 99

1.0

T T T T T T
02 04 06 08 10 12
u9s

{‘/;7 Ri', UQG,VL} Data ,f"”
Quantiles .-~
o Reference data: CCSD(T) (no I -
uncertainty) . .-
o Authors validate by visual Fip=R AR o
appreciation of error bars
9 | .
! \
—
|

*Bakowies and von Lilienfeld (2021) JCTC (https://tinyurl.com/ms3dy7yv), Pernot (2022) J Chem Phys
(https://doi.org/10.1063/5.0084302)
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Examples from the CC literature BAK2021

ZPE by the ATOMIC composite method ~ ICD@unwersité

PARIS-SACLAY
PICP testing at p = 0.95

Confidence curve

LCP analysis S
(=2 " Mean \
> i DT N AY
£0% - = 1 ]4)92(3) o |
Qo . o \
E o | \
[ .o a © N
o g < S AN
< = N
& <9 < N
s © w o | ..
> < S R
8 2 Y
- 3 ~
8 o ~ | N R
o o N
- —e— P95 N
AY
T T T T T o N
0.05 0.20 0.50 =} T T T T

0 20 40 60 80 100
k% discarded

u9s

@ 15,95 = 0.92(3): average calibration is OK
@ large uncertainty on PICPs, but the trends are informative

@ from the LCP analysis, one sees a systematic bias:
small PUs are underestimated, large ones are overestimated
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Examples from the CC literature PAN2015

Formation heats by the mBEEF method®® iCD@unwersité

PARIS-SACLAY

@ Bayesian Ensembles method
inflates parametric uncertainty of Data
exchange-correlation model to Quantles =
cover errors amplitude >

1.0

e strong functional constraints:
tightness 777

Error [kcal/mol]

e does not disambiguate model
uncertainty from reference data
uncertainty

o Set of M =257 {V;, R;,uy,}

-1.0

0.05 0.15 0.25 0.35

. . Pred. Unc. [kcal/mol
@ R; experimental, no uncertainty i 1

provided

*Pandey and Jacobsen (2015) Phys. Rev. B (https://tinyurl.com/5dv9spnn), Pernot (2017) J. Chem.
Phys. (https://tinyurl.com/yb6uzwzr), Pernot and Cailliez (2017) AIChE J. (https://tinyurl.com/2xxcfs2f)
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Examples from the CC literature

Formation heats by the mBEEF method
LZV analysis
w0 - Mean

g |

R\ N ?e

g B * ‘:;‘ —————————————————— Jil3
ety e}

005 015 025 035

Pred. Unc. [kcal/mol]

PAN2015

@ Var(Z) = 1.3(2), average calibration OK
@ the LZV analysis shows that small PUs are underestimated,
while large ones are overestimated
@ the confidence curve is catastrophic
@ these uncertainties should not be trusted

Pascal PERNOT (ICP)

MAE / MAEO
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Confidence curve

L]
universite
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20 40 60 80

k% discarded
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Examples from the CC literature

Query by Commitee UQ

ZHE2022

. [ ]
]Lp@ université
PARIS-SACLAY

QbC uncertainties (7 = 8) on formation enthalpies for AIQM1 and

ANI-1cex?’. Set of M = 472 {E;, uy, }

AIQM1

10

Data
Quantiles

,,-.....*%g

Error [kcal/mol]
0

o
—

1 T T
0.01 0.05 0.50

UE [kcal/mol]

Error [kcal/mol]

10

-5

-10

ANI-1ccx

Data
Quantiles

T 1 T 1
0.01 0.05 0.50

UE [kcal/mol]

2"Zheng et al. (2022) J. Phys. Chem. Lett. (https://tinyurl.com/ccefk79z)
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Examples from the CC literature

Query by Commitee UQ

MAE / MAEO

@ QbC does not provide a prediction uncertainty

ZHE2022

icP@

1.0

0.2

0.0

L]
universite

PARIS-SACLAY

Stat AIQM1  ANI-1cex  Target
Var(Z) 59 43 1.4
Confidence curves g Reliability diagram
=
n L
o | # t ’
S 52
wn ¥
o 4 4 b
3 84 gooe *
- .
i 3
< S 4
- - Oracle™ ~ _ g’
— AIQM1 ~< | e AIQM1
— ANI-1ccx T 8 |- @ ANI-1cex
T T T T S T T T T T T T T T 1
20 40 60 80 100 0.05 0.20 1.00 5.00 50.00
k% discarded RMS(UE)

@ but both methods point reliably to largest errors
(good for active learning !)
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Examples from the CC literature HAS2019

Bayesian Neural Network iCO@universite
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Data issued from a BNN trained to predict a MD potential®® (1/ = 5923)

140 v
B) BNN2 e ) o
) i high N
=120 @ Data
3 R Quantiles
€100
£100 s
5 z
= 4 [=1
E 80 E w
g [9] é o —
601 Q 2
S > .
e
£ 40 RMSD: 4.69 fs S |
° 7
e .
% 201 MAD: 2.40 fs
a r2: 0.97 low
o
0 : ‘ | r - N T T T T
0 25 50 75 100 125 !
True dissociation times [fs] 0.2 0.5 1.0 2.0

Prediction Uncertainty, uE

@ The color scale for uncertainty is not a proper tool for validation

BHase et al. (2019) Chem. Sci. 10:2298
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Examples from the CC literature HAS2019

Bayesian Neural Network iCO@universite
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Confidence plot . Reliability diagram
] S +
N
~ _
R
o * + ’
=] 1 w7
g,
=24 Tt~ oo
Z o T~< o o **’
Y nrs o ‘
= RS - o¢°
= wn
© - - Oracle S
-1 — Data
3 T T T T S L — T
0 20 40 60 80 100 0.1 0.5 20 5.0 20.0
k% discarded RMS(UE)

@ This BNN uncertainty is NOT a prediction uncertainty (Var(Z) = 30)
and should not be used for active learning. ..
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Conclusion

Conclusions iCp@unlversmé
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Calibration is easy, tightness is tough !

o Calibration/Tightness : a principled framework for UQ validation

o CC-adapted C/T validation methods

o standard PU : test z-scores variance (LZV analysis), or build RD
o expanded PU : test PICP values (LCP/LRR analysis)

e CC-UQ methods rarely reach calibration and/or tightness
o datasets often too small for solid conclusions
e should we loosen the validation criteria ?

o how-much mis-calibration/mis-tightness is acceptable for a given
application ? (e.g. calibration is not useful for active learning. . .)
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Conclusion

Warmful thanks to. .. ij@unlversmé.
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e Andreas SAVIN (LCT, Jussieu)
for enlightening discussions

e Jonny Proppe (Univ. Géttingen)
for the PRO2022 dataset

e Morgane Vacher (Univ. Nantes)
for the HAS2019 dataset

e and YOU
for your attention !
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