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Molecular Mechanics Simulation

… particle positionsR = {ri}N
i=1

E(R) … potential energy

··R = − ∇E(R)
min E(R)
∇⊥E(R) = 0
R ∼ Z−1e−βE
…

⇒

Which level of theory? 

Empirical 
QM

Interatomic 
potentials

DFTQuantum 
Monte Carlo

Coarse grained 
molecular

Quantum 
Chemistry

Finite elements

H(R, {ψk})ψk = ϵkψk

Electronic Structure?

∑i F(∑j ρ(rij))
Interatomic Potential?
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(Concurrent) Multiscale Modelling - 90’s, 00’s
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topological

Empirical 
QM

Interatomic 
potentials

DFT
Quantum 
Monte Carlo

Quantum 
Chemistry

Coarse grained 
molecularCoarse-Graining

H(R, {ψk})ψk = ϵkψk

Electronic Structure

E(R) = E(c; R)

 to within arbitrary accuracy s.t.E ≈ Eqm

COST( )  COST( )E ≪ EQM

OFFLINE

Interatomic Potential (Surrogate)

Suppose we only want mechanics ...

Eqm(R) = ℱ(R, {ϵk}, {ψk})

Today’s talk: how (multi-scale) analysis techniques can help understand or even  
support ML-backed coarse-graining? Towards an end-to-end theory … 4

Dimension Reduction



Interatomic Potentials

until ca 1995: ad hoc modelling,  
some formal asymptotics

 
NOT SYSTEMATIC!

 
2005 onwards: Machine-Learning 

 revisit interatomic potentials  
from this new perspective!
⇝

E(R) = ∑
i

ε(Ri) where Ri = {rij}j∈N(i)

rc

S.-W.: ε(Ri) := ∑
j

ε2(rij) + ∑
j1<j2

ε3(rij1rij2, θij1j2)

EAM: ε(Ri) := ∑
j

V(rij) + F(∑j ρ(rij))

ML:      universal approximatorε(Ri) :=
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Transferrability via Spatial Decomposition

We want to perform large-scale materials 
simulations that cannot be done with DFT;  
O(10k) to O(1M) atoms

Parameterisation of Site Energy:

E(R) = ∑
i

ε(Ri) = ∑
i

ε(c; Ri)

- can train on small configurations!!!
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Rigorous Approximation Result

Theorem          [Chen, Thomas, CO, 2019] 
                                                  [Thomas, 2020]

(1) c ~ gap +              for β ∈ (1, ∞]β−1

(2) Point spectrum (defect) does not 
     affect the result. 

(3) For nonlinear models, provided 
     dielectric response stable

NB:  as well, more complex.C = C(β, gap)

For a wide range of tight-binging models 
(implicitly assuming charge screening)

H(R, {ψk})ψk = ϵkψk

Eqm(R) = ℱ(R, {ϵk}, {ψk})

∂εQM({rij}j)
∂rim

≤ C exp( − crim)

Our Claim: 

EQM(R) = ∑
i

εQM(Ri)
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Curse of Dimensionality

Corollary:    
We can approximate 

εQM({rij}j) = ε({rij}rij<rcut) + O(e−crcut)

∂εQM({rij}j)
∂rim

≤ C exp( − crim)EQM(R) = ∑
i

εQM(Ri)

In practice:   contains ca 30 to 100 atoms … 
                  … high-dimensional approximation 

#Ri
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Body-order Expansion (HDMR, ANOVA, ...)
e.g. Stillinger-Weber, MEAM, ... 
always truncated and N = 2
i.e. body-order = 3

- conflicting folklore … general belief this expansion need not always converge and often 
might converge very slowly … this is based on the vacuum cluster expansion

body-order = N + 1

- For MLIPs: truncating at  reduces dimensionality of the parameterisation

- Much easier to reason about approximation of , since defined on .

N ≪ #Ri

ε(N) ℝdN

ε(N)(Ri) := ε(0) + ∑
j1

ε(1)(rij)+ ∑
j1<j2

ε(1)(rij1rij2, cos θij1j2)

+ ∑
j1<j2<j3

ε(3)(rij1, rij2, rij3) +⋯+ ∑
j1<⋯<jN

ε(N)(rij1, …, rijN)
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Rapid Converging Many-Body Expansion 

|εQM(Ri) − ε(N)(Ri) | ≲ Ce−cN

Theorem [Chen, Thomas, CO, 2021] 

For linear tight-binding models 

 
for all configurations  within 
one crystalline phase of the material

Ri

(2) Insulator

Classical potential theory (e.g., Ransford, Saff)
generalisation to non-interval sets 
(closely related to BOP theory)

(1) Metal

NB:  as well, more complex.C = C(β, gap)

Bernstein ellipsi = contours of gE

c ~  gap + 1/β
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Modelling: Atomic Body-Order Expansion

e.g. Stillinger-Weber, MEAM, ... 

3-body : cost ~ (#Ri)2

cost ~ (#Ri)3
cost ~ (#Ri)ν/ν!

- the exponential scaling severely limits the utility of the body-order expansion! 
traditionally truncated at 3-body, with highly simplified 4-body for molecules

E(R) = ∑
i

ε(Ri)

ε(N)(Ri) := ε(0) + ∑
j1

ε(1)(rij)+ ∑
j1<j2

ε(2)(rij1rij2, cos θij1j2)

+ ∑
j1<j2<j3

ε(3)(rij1, rij2, rij3) +⋯+ ∑
j1<⋯<jN

ε(N)(rij1, …, rijN) +O(e−cN)

+ additional cost 
of approx. in ℝ3ν
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Atomic Cluster Expansion (1)        (an aside)

ε(N)(Ri) = ε(0) + ∑
j1

ε(1)(rij) + ∑
j1<j2

ε(2)(rij1rij2, cos θij1j2) + ⋯ + ∑
j1<⋯<jN

ε(N)(rj1, …, rjN)

= U(0) + ∑
j1

U(1)(rij) + ∑
j1,j2

U(2)(rj1, rj2) + ⋯ + ∑
j1,…,jN

U(N)(rj1, …, rjN)

"self-interaction  
  formulation"

"canonical  
 formulation"

can exploit the  
tensor product structure!

(permutation
 invariance)

Drautz, 2019; Seko et al 2019; Dusson et al, 2019 …
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Atomic Cluster Expansion (2)

∑
j1,…,jν

U(N)(rj1, …, rjN)

Expand  in a tensor product basisU(N)(r)≈ ∑
j1,…,jN

∑
k1,…,kN

ck1⋯kN

N

∏
α=1

ϕkα
(rjα)

= ∑
k1,…,kN

ck1⋯kN ∑
j1,…,jN

N

∏
α=1

ϕkα
(rjα)

= ∑
k1,…,kN

ck1⋯kN

N

∏
α=1

∑
j

ϕkα
(rj)

Exploit tensor product structure to 
exchange  and ∑ ∏

cost ~ #  + #   #(kα) × N k × Ri

cost ~  + #   ##(kα)N k × Ri
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Atomic Cluster Expansion (3) Bartok, Csanyi, Kondor, 2010
Ceriotti et al, ..., 2020, 2021
Drautz, 2019
Dusson, ..., CO, 2019

[1] Atomic basis  /   density projection: 

Av := ∑
j

ϕv(rij)

 basis functionsℝ3

[2] Symmetric basis   /  -Correlations: N

Av1,…,vN
:= ∏

t

Avt

(to explicitly resolve the O(3) integral)

ϕv(r) := ϕnlm(r) = pn(r)Ym
l ( ̂r)

[3] ACE Basis   /   Symmetry-adapted -Correlations: N

Xv1,…,vN
:= −−∫O(3)

Av1,…,vN
∘ Q dQ

⇒ Xi = 𝒞 ⋅ A(Ri)
where  is sparse (Clebsch-Gordan coefficients) 
classical representation theory of 

𝒞
O(3)
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Thm: basis of permuation-invariant 
         multi-set functions

Equivariance: if we require   
                      then simply modify step [3]:  

φ ∘ Q = Q[φ] Xv := −−∫O(3)
Q[eα] Av ∘ Q dQ



Approximation with Invariant Polynomials
(earlier results by Shapeev, 2016)

Approx.Thy.: Bachmayr, Chen, Dusson, Thomas, CO [2021]

Under the assumptions of our previous results …

∥εqm − εace∥∞ ≲ e−a1rcut + e−a2N + e−a3D

how to balance errors, … cost estimates, 

∥εqm − εace∥∞ ≲ exp( − γ
[log PARAMS]4/3

log log PARAMS )

Complexity                    [Kaliuzhni, CO, 2022]

COST ∼ 2 ⋅ #PARAMS

asymptotically as . 
(Note this is independent of body-order!)

D → ∞

Construct algorithm to evaluate ACE with

Results quantify how approx. symmetric functions is much easier. Intuitively  less information, but 
technically one needs to work with generalisations of integer partitions [Hardy, Ramanujan, 1918]

(N!)−1
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Systematic Convergence Test - Si training set
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GAP - PRX 2018 
DFT - CASTEP

ACE
~0.8ms / atom

GAP
~30 ms / atom

Energy-Volume Curves
Phonons (diamond)
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Potential for Si (1)
linear ACE: 
corr-ord=5
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Cvd Oord, 2021



Molecules David Kovacs et al, 2021
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• Phase transitions found 
using Nested Sampling


• Nested Sampling 
integrates partition 
function by exploring 
entire configurational 
space


• Requires potentials to be 
accurate, robust and fast 
(~ ms/atom per force call)


• ACE potential using HAL 
database

Cas van der Oord 
14:30 to 15:00 - Hyperactive Learning (HAL)

19

Example: MoNbTaW
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Physics-Informed Nonlinearities

ε(Ri) = φ1(Ri) − φ2(Ri)

Drautz (2019) :   
(EAM, FS, BOP inspired)

where each  is an ACE 
(linear parameterisation of an 
 atomic many-body expansion)

φi

EAM: ε(Ri) := ∑
j

V(rij) + F(∑j ρ(rij))

overarching idea: decompose a property into local, low-body-order, smooth components



Physics-Informed Nonlinearities

ε(Ri) = φ1(Ri) − φ2(Ri)Drautz (2019) :  
(EAM, FS, BOP inspired)

Theorem            [Chen, Thomas, CO, 2021] 

  

 = linear ACE model, then 
                c ~  gap + 1/β 
for all configurations  within 
one crystalline phase

ε(N)

Ri

Recall the truncation error of body-order expansion:

|εQM(Ri) − ε(N)(Ri) | ≲ Ce−cN

Theorem.        [Chen, Thomas, CO, 2021] 
 

where  are linear ACE models, then

                           
uniformly across all phases

φp

ε(N) = Φ(φ1, …, φN)

c ~  gap + 1/β

 Φ(φ1, φ2) = φ1 − φ2

overarching idea: decompose a property into local, low-body-order, smooth components
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Reproducing a benchmark of 

∙

 nonlinear ACE: pacemaker (Drautz group)⋆
linear: ACE1.jl∙

∙
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molecular

Finite elements

MLIPs

homogenisation with symmetry?

e.g. tight-binding 
approximation

H = H(R)

coarse-graining 
dynamical systems

··u = − ∇F(u) + Γ(u)Γ(u)T ·u + Γ(u) ·W

e.g. mean field
approximation

V(r) = 𝒱(r; {ri})

Coarse-graining across all the scales 
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Empirical 
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Interatomic 
potentials

DFT
Quantum 
Monte Carlo

Quantum 
Chemistry

Coarse grained 
molecular

Finite elementse.g. tight-binding 
approximation

H = H(R)

Coarse-graining across all the scales: 

Self-Consistent Hamiltonian

24

L. Zhang, B. Onat, G. Dusson, G. Anand, R.J. 
Maurer, CO and JRK, arXiv:2111.13736

Analysis - Jack Thomas, H Chen, CO, 2021



Example: Self-Consistent Hamiltonian

H = − Δ + Veff

Hψa = ϵaψa

[Veff]i
= 𝒱[ρi] + Coulomb

Start from KS-DFT  
with Atomic Orbital Basis

ρi = ∑a [ψa]2
i

Yukawa

25

Same principles apply as for site potentials

ρsc
i = ρ(Ri)

= ρ({rij}rij<rcut
) + O(e−crcut)

= ρ(N)({rij}rij<rcut
) + O(e−c1rcut) + O(e−c2N)

locality 

many-body expansion

 Parameterize the Hamiltonian by an Equivariant ACE Model⇒



ACE Param. of a Self-Consistent Hamiltonian
“Learn” the self-consistent Hamiltonian in atomic orbital basis

Hαβ
IJ = ℋαβ(RIJ)

ℋαβ ∘ Q = Dα ℋαβ (Dβ)*  use equivariant ACE expansion⇒

where bond environmentRIJ =H = − Δ + Veff

Hψi = ϵiψi

Veff = Veff[(ψi)i]

E.g. KS-DFT (FHIaims)

L. Zhang, B. Onat, G. Dusson, G. Anand, R.J. Maurer, C. Ortner and JRK, arXiv:2111.13736
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FIG. 2. Block structure and atomic orbital subblocks in the Hamiltonian and overlap matrices used in our models. Each block
within panel (a) is a 14 ⇥ 14 matrix with the atomic orbital structure HIJ shown in panel (b). Blocks coloured green in (a)
are onsite blocks, while those shown in purple are o↵site blocks. Note that the onsite HII are self-adjoint and hence, e.g., only
one of the ps and sp blocks needs to be fitted.

we present a general outline of the ideas, making certain
choices of approximation parameters concrete in §IID.

We denote the parameterised Hamiltonian and overlap
by H̃, S̃. For the sake of simplicity we focus the presen-
tation on H̃ and remark on the relevant modification for
S̃ at the end. Since the focus of the present work is on
elemental metallic systems we ignore chemical species in-
formation entirely. All procedures are straightforward to
generalise for multiple species with the only e↵ect being
an increased number of H̃ and S̃ blocks that have to
be considered as element combinations increase. In the
present case, H̃on is invariant under permutations of RI

and H̃o↵ is invariant under permutations of RIJ . Both
can therefore be parameterised by the ACE model. Here,
we closely follow the procedures introduced by Dusson
et al. 27 , Drautz 35 , Lysogorskiy et al. 38 .

1. Parameterisation of Hon: We start by choosing a
one-particle basis,

�v(x) := �on

nlm
(x) := Pnl(r)Y

m

l
(x̂)fcut(r) (10)

where we have identified the composite index v ⌘ (nlm).
The radial cuto↵ or envelope function fcut(r) ensures that
only interactions of nearby atoms are taken into account,
exploiting the near-sightedness of electronic structure.

Given the one-particle basis we can form the density
projection and projected ⌫-correlations (product basis),

AI

v
:=

X

J 6=I

�v(rIJ), and

A
I

v :=
⌫Y

t=1

AI

vt
for v = (v1, . . . , v⌫), ⌫ = 1, 2, . . . .

The A
I

v form a complete basis of permutation-invariant

polynomials, hence we can approximate

HII = Hon(RI) ⇡ H̃
PI

on
(RI) =

X

v

CvA
I

v, (11)

where A
I

v are scalar and the parameters Cv =
(C↵1↵2

v )Norb
↵1,↵2=1

have the same dimensionality as HII i.e.,
Norb ⇥ Norb (recall that HII denotes the onsite Hamil-
tonian block corresponding to orbitals centered at atom
I). The summation over v will be restricted to a finite
set, the choice of which is a crucial aspect of the model
accuracy; cf. § IID.
The expansion (11) incorporates translation and

permutation invariance but not yet the O(3)-
equivariance (7). Following the general ACE
construction27 we can achieve this by simply aver-
aging the representation over the group O(3), i.e.,

H̃on(RI) = ��
Z

O(3)

D(Q)H̃PI

on
(QRI)D(Q)⇤dQ,

In step 4. we will review how this integration is explicitly
resolved.
2. Parameterisation of Ho↵ : The procedure for pa-

rameterising Ho↵ is similar to that of Hon, the main
di↵erence being that the presence of a bond rather than
a site changes the permutation-invariance. Specifically,
we now need to define one-particle basis functions for the
bond variable and for the environment variables

�b

nlm
(rIJ) = P b

nl
(rIJ)Y

m

l
(r̂IJ)f

b

cut
(rIJ),

�e

nlm
(rIJ,K) = P e

nl
(rIJ,K)Y m

l
(r̂IJ,K)f e

cut
(rIJ,K , rIJ).

(12)

where rIJ = rIJ r̂IJ and rIJ,K := rK � 1

2
(rI + rJ). Note

in particular that the cuto↵ function for the environment,
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tation on H̃ and remark on the relevant modification for
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et al. 27 , Drautz 35 , Lysogorskiy et al. 38 .
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only interactions of nearby atoms are taken into account,
exploiting the near-sightedness of electronic structure.
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projection and projected ⌫-correlations (product basis),

AI
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�v(rIJ), and
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v :=
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vt
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The A
I

v form a complete basis of permutation-invariant

polynomials, hence we can approximate

HII = Hon(RI) ⇡ H̃
PI

on
(RI) =

X

v

CvA
I

v, (11)

where A
I

v are scalar and the parameters Cv =
(C↵1↵2

v )Norb
↵1,↵2=1

have the same dimensionality as HII i.e.,
Norb ⇥ Norb (recall that HII denotes the onsite Hamil-
tonian block corresponding to orbitals centered at atom
I). The summation over v will be restricted to a finite
set, the choice of which is a crucial aspect of the model
accuracy; cf. § IID.
The expansion (11) incorporates translation and

permutation invariance but not yet the O(3)-
equivariance (7). Following the general ACE
construction27 we can achieve this by simply aver-
aging the representation over the group O(3), i.e.,

H̃on(RI) = ��
Z

O(3)

D(Q)H̃PI

on
(QRI)D(Q)⇤dQ,

In step 4. we will review how this integration is explicitly
resolved.
2. Parameterisation of Ho↵ : The procedure for pa-

rameterising Ho↵ is similar to that of Hon, the main
di↵erence being that the presence of a bond rather than
a site changes the permutation-invariance. Specifically,
we now need to define one-particle basis functions for the
bond variable and for the environment variables

�b

nlm
(rIJ) = P b

nl
(rIJ)Y

m

l
(r̂IJ)f

b

cut
(rIJ),

�e

nlm
(rIJ,K) = P e

nl
(rIJ,K)Y m

l
(r̂IJ,K)f e

cut
(rIJ,K , rIJ).

(12)

where rIJ = rIJ r̂IJ and rIJ,K := rK � 1

2
(rI + rJ). Note

in particular that the cuto↵ function for the environment,

same principles apply:  
locality & many-body expansion

 Expand each block as an ACE⇒

ℋαβ(RIJ) = ∑
v

cvXαβ
v (RIJ)

equivariant  
ACE basis
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Prediction Accuracy
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L. Zhang, B. Onat, G. Dusson, G. Anand, R.J. Maurer, C. Ortner and JRK, arXiv:2111.13736

Fit Al hamiltonian to bcc and fcc MD data, predict band structure and DOS (fit to FHIaims)

3-body
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Orthogonal Perspective: Focus on the Properties
∇EQM

M (RQM
M ) = 0

∇EML
M (RML

M ) = 0
predict on domain ,     large[0,M]3 MTarget Problem:

force error,  simulation domain

∥RQM
M − RML

M ∥E ≲ |∇EQM
M (RQM

M ) − ∇EML
M (RQM

M ) |

[1] A general (but useless) result: 

Y Wang, CO, in prep

M

remember we train on small  domain,  [0,L]3 L ≪ M

+ perturbations
L



Error in Terms of Training Data
force error,  simulation domain[1] A general but useless result: 

∥RQM
M − RML

M ∥E ≲ |∇EQM
M (RQM

M ) − ∇EML
M (RQM

M ) |

29

Y Wang, CO, in prep

[2] Split Force Error into Training Error + Interaction: 

force error, training  domain

remaining 
uncontrolled 
error

∥RQM
M − RML

M ∥E ≲ |∇EQM
L (RQM

L ) − ∇EML
L (RQM

L ) | + L−3/2Point Defects

∥RQM
M − RML

M ∥E ≲ |∇EQM
L (RQM

L ) − ∇EML
L (RQM

L ) | + |ℂQM − ℂML | + L−1
elastic constants error (CLE)

Dislocations



Error in Terms of Training Data
force error,  simulation domain[1] A general but useless result: 

∥RQM
M − RML

M ∥E ≲ |∇EQM
M (RQM

M ) − ∇EML
M (RQM

M ) |

30

Y Wang, CO, in prep

[2] Split Force Error into Training Error + Interaction: 

force error, training  domain

remaining 
uncontrolled 
error

∥RQM
M − RML

M ∥E ≲ |∇EQM
L (RQM

L ) − ∇EML
L (RQM

L ) | + L−3/2Point Defects

∥RQM
M − RML

M ∥E ≲ |∇EQM
L (RQM

L ) − ∇EML
L (RQM

L ) | + |ℂQM − ℂML | + L−1
elastic constants error (CLE)

Dislocations

+L−1∥τQM − τML∥ + L−2

virial error

+L−3/2∥FCMQM − FCMML∥ + L−9/2

force constants error



Preliminary Example

31

force error, training  domain

remaining 
uncontrolled 
error

∥RQM
M − RML

M ∥E ≲ |∇EQM
L (RQM

L ) − ∇EML
L (RQM

L ) | + L−3/2Point Defects

+L−3/2∥FCMQM − FCMML∥ + L−9/2

force constants error
Vacancies & Interstitials in EAM-W



Conclusion: Coarse-graining with ML
- Classic analytic modelling
- keep track of approximation steps 
- Use ML to fill in the gaps

Empirical 
QM

Interatomic 
potentials

DFT

Quantum 
Monte Carlo

Coarse grained 
molecular

Quantum 
Chemistry

ab initio

empirical no longer ???
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 end-to-end error control⇒

Main GAP: Long-range charge equilibration - but see forthcoming work from Jack Thomas...


