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Brillouin zone sampling
Consider non-interacting electrons in a perfectly periodic Hamiltonian
H = − 1

2 ∆ + V with lattice R, and a L× L× L supercell

Because of periodicity, eigenstates can be searched as Bloch waves
ψk(r) = e ik·r uk(r)

where uk is cell-periodic and k is in the discrete Brillouin zone

BL =
{ 3∑

i=1
kia∗i , ki ∈

{
0, . . . , L− 1

L

}}
Yields eigenstates

Hψnk = εnkψnk



Electrons in a supercell
Occupied states are those for which εnk ≤ εF , where

L3Nel =
∑

k∈BL,n∈N
1(εnk ≤ εF )

with total energy

L3EL =
∑

k∈BL,n∈N
εnk1(εnk ≤ εF )

When L→∞:

lim
L→∞

EL =
 
B

∑
n∈N

εnk1(εnk ≤ εF )dk

where Nel =
 
B

∑
n∈N

1(εnk ≤ εF )dk

What is the speed of convergence with respect to L? Can it be improved?

Major practical issue (second source of errors after pseudopotentials)



Band structure

Tin (metal) Silicon (semiconductor)
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Numerical analysis: the case of insulators

In a gapped system (insulator, semiconductor),

inf
k∈B

εNel+1,k − sup
k∈B

εNelk ≥ g > 0,

and so there are exactly Nel bands filled at each k:

E =
∑

n

 
B
εnk1(εnk ≤ εF )dk =

 
B

Nel∑
n=1

εnkdk

EL = 1
L3

Nel∑
n=1

∑
k∈BL

εnkdk

Theorem (Gontier-Lahbabi ’16)
Under suitable hypotheses on Vper, there is α > 0,C > 0 such that

|E − EL| ≤ Ce−αL



Ideas of the proof: Riemann sums of periodic functions
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For a periodic f , what is the error made by

ˆ 2π

0
f (x)dx ≈ 2π

L

L−1∑
k=0

f (2πk/L)

Usual estimates (Taylor): O(1/L)
But large error cancellation: quadrature exact for e inx , |n| < L



(Ideas of the proof: exponential convergence)

Theorem (Classical: Trefethen-Weideman ’14, Gontier-Lahbabi ’16)
1 If f is periodic and smooth, then the integration error is O(L−p) for

all p
2 If f is complex analytic on the strip R + [−A,A]i , then the

integration error is O(e−βAL), β a universal constant.

(proof: regularity ⇐⇒ decay of Fourier coefficients)

E =
 
B

Nel∑
n=1

εnkdk

In general, εnk is smooth (and even complex analytic on a strip)
outside eigenvalue crossings εn,k = εn′,k

But sums of eigenvalues are smooth when εNel,k < εNel+1,k

E =
 
B

Tr(PNel (Hk)Hk)dk, PNel (Hk) = 1
2πi

˛
C

(λ− Hk)−1dλ

R
ε1k · · · εNelk εNel+1,k

C
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Metals and Fermi surface
In metals, there is no gap

E =
∑

n

 
B
εnk1(εnk ≤ εF )dk, Nel =

∑
n

 
B
1(εnk ≤ εF )dk

Key concept: Fermi surface
S(εF ) = ∪nSn(εF ), Sn(εF ) = {k ∈ B, εnk = εF}.

Periodic table of Fermi surfaces
http://www.phys.ufl.edu/fermisurface/periodic_table.html

http://www.phys.ufl.edu/fermisurface/periodic_table.html


Assumptions

S(εF ) = ∪nSn(εF ), Sn(εF ) = {k ∈ B, εnk = εF}.

Assumptions
1 S(εF ) 6= ∅ (metal)
2 Sn(εF ) ∩ Sn′(εF ) = ∅ (no crossing on Fermi surface)
3 ∇εn,k 6= 0 on Sn(εF ) (no flat bands)

Excludes semi-metals (graphene) and highly symmetric systems (free
electron gas)
No crossing: εnk is smooth on a neighborhood of Sn(εF )
No flat bands: S = ∪nε

−1
nk ({εF}) is a smooth surface



Density of states

Theorem (Co-area formula, integration over level sets)
If k→ f (k)/|∇E (k)| is L1,

 
B

f (k)dk =
ˆ
R

(ˆ
E−1({ε})

f (k)
|∇E (k)|dσ(k)

)
dε

DoS of TiN

Integrated density of states

N (ε) =
∑

n

 
B
1( εnk︸︷︷︸

E(k)

≤ ε)dk

” = ”
ˆ ε

−∞

∑
n

ˆ
Sn(ε′)

1
|∇εnk|

dσ(k)︸ ︷︷ ︸
D(ε′)

dε′

N is smooth near εF and

D(εF ) = N ′(εF ) > 0



Error analysis for interpolation
Approximate εnk by an interpolated εp

nk with order p on a L× L× L
grid and integrate

EL =
∑

n

 
B
εL,p

nk 1(εL,q
nk ≤ ε

L
F )dk

N =
∑

n

 
B
1(εL,q

nk ≤ ε
L
F )dk

Interpolate integrand with order p and domain of integration with
order q
Most often used in practice: p = 2, q = 1 (Blochl’s corrections ≈
higher-dimensional Euler-MacLaurin)

Theorem
There is C > 0 such that

|εL
F − εF | ≤

C
Lq+1

|EL − E | ≤ C
(

1
Lp+1 + 1

L2q+2

)
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∑

n

 
B
εL,p

nk 1(εL,q
nk ≤ ε

L
F )dk
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∑

n

 
B
1(εL,q

nk ≤ ε
L
F )dk

Interpolate integrand with order p and domain of integration with
order q
Most often used in practice: p = 2, q = 1 (Blochl’s corrections ≈
higher-dimensional Euler-MacLaurin)

Theorem
There is C > 0 such that

|εL
F − εF | ≤

C
Lq+1

|EL − E | ≤ C
(

1
Lp+1 + 1

L2q+2

)



(Ideas of the proof: error on the Fermi level)
Approximate integrated density of states

N L(ε) =
∑

n

 
B
1(εL,q

nk ≤ ε)dk

εL
F is defined by N L(εL

F ) = Nel = N (εF ).
εnk is smooth near εF , so N L and N are O(Lq+1)-close near εF . From
N ′(εF ) = D(εF ) > 0, it follows that

|εL
F − εF | ≤

C
Lq+1

For the energy:

EL − E =
∑

n

 
B

(εL,p
nk − εnk)1(εL,q

nk ≤ ε
L
F )dk︸ ︷︷ ︸

bulk,O(L−(p+1))

+
∑

n

 
B
εnk(1(εL,q

nk ≤ ε
L
F )− 1(εnk ≤ εF ))dk︸ ︷︷ ︸

surface,O(L−(q+1))



(Ideas of the proof: error on the energy)

surface error =
∑

n

 
B
εnk(1(εL,q

nk ≤ ε
L
F )− 1(εnk ≤ εF ))dk

Naively, this is controled by the size of the integration domain so
O(L−(q+1)), but

surface error =
∑

n

 
B

(εnk − εF )(1(εL,q
nk ≤ ε

L
F )− 1(εnk ≤ εF ))dk

+ εF (N L(εL,q
F )−N (εF ))︸ ︷︷ ︸

=0

= O(L−(2q+2))

This trick is special for the energy (“the energy is variational in the Fermi
surface”), only O(L−(q+1)) for other quantities (Fermi level, density...)
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Smearing

ET =
∑

n

 
B
εnkf

(
εnk − εT

F
T

)
dk

N =
∑

n

 
B

f
(
εnk − εT

F
T

)
dk
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x
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Fermi-Dirac

Gaussian

MP1

MP2

f (x) is an approximation of Heaviside(−x)
T is a regularization parameter (physically, a temperature)
The integrand is now smooth, and therefore efficiently computed by
Riemann sums: ET ,L

Two sources of errors:

|ET ,L − E | ≤ |ET − E |︸ ︷︷ ︸
smearing error

+ |ET ,L − ET |︸ ︷︷ ︸
quadrature error



Smearing error
A smearing function is of order p ifˆ +∞

−∞
(f (ε)− 1(ε < 0))P(ε)dε = 0

for any polynomial P of degree p − 1.
Several choices in the literature: Fermi-Dirac, Gaussian smearing (order
1), Methfessel-Paxton (higher order)...
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x
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Theorem
If f has decaying tails and is of order p, there is C > 0 such that

|εT
F − εF | ≤ CT p+1

|ET − E | ≤ CT p+1



(Ideas of the proof)
Formally, using the co-area formula,

NT (ε) =
∑

n

 
B

f
(
εnk − ε

T

)
dk =

ˆ
R

f
(
ε′ − ε

T

)
D(ε′)dε′

= T
ˆ
R

f (x)D(ε+ Tx)dx

f has decaying tails, so D is evaluated T -close to ε, around which D can
be expanded into Taylor series, and therefore

NT (ε)−N (ε) = T
ˆ
R

(f (x)− 1(x ≤ 0))D(ε+ Tx)dx

= T
p−1∑
n=0

T n

n! D
(n)(ε)

ˆ
R

(f (x)− 1(x ≤ 0))xndx︸ ︷︷ ︸
=0

+O(T p+1)

Similarly,∑
n

 
B
εnkf

(
εnk − ε

T

)
dk =

ˆ
R
ε′f
(
ε′ − ε

T

)
D(ε′)dε′



(Quadrature error)

ET =
∑

n

 
B
εnkf

(
εnk − εT

F
T

)
dk, N =

∑
n

 
B

f
(
εnk − εT

F
T

)
dk

Integrand smooth, approximate by Riemann sums ET ,L, εT ,L

Theorem (Classical: Trefethen-Weideman ’14, Gontier-Lahbabi ’16)
If g is complex analytic on a strip SA = R3 + i [−A,A], then the error
between its integral and Riemann sum is bounded by

C
(

sup
z∈SA

g(z)
)

e−cAL

Find an analytic continuation of

g(k) =
∑

n
εnkf

(
εnk − εF

T

)
1 Fermi-Dirac f (x) = (1 + ex )−1 analytic on a strip (poles at

(2Z + 1)πi)
2 Gaussian f (x) = erfc(x)/2 entire



(Analytic properties of the integrand)

g(z) =
∑

n
εnzf

(
εnz − εF

T

)
but εnz not analytic

= Tr
[
Hzf

(
Hz − εF

T

)]
but Hz is not self-adjoint, f (Hz)?

R

iR

σ(H)

εnk

g(z) = Tr
˛

C
λf ((λ− εF )/T )(λ− Hz)−1dλ

But (λ− Hz)−1 is not trace-class (εnk ≈ n2/d)... finally

g(z) =
˛

C
λ(λ+ Σ)f ((λ− εF )/T ) Tr

[
(λ− Hz)−1(Σ + Hz)−1] dλ

is an analytical continuation of g(k) =
∑

n εnkf
(
εnk−εF

T
)



Sampling of smeared quantities

Theorem
The integrand is complex analytic in k, on a strip of size O(T )
(Fermi-Dirac smearing), and on the whole complex plane (Gaussian-type
smearing).
There is C(T ), c(T ) such that

|ET ,L − ET | ≤ C(T )e−c(T )Lβ

|εT ,L
F − εT

F | ≤ C(T )e−c(T )Lβ

with β = 1 (Fermi-Dirac) or β = 4/3 (Gaussian-type)

Total error similar in spirit to

|E − ET ,L| ≤ C(T p+1︸ ︷︷ ︸
E−ET

+ e−cTL︸ ︷︷ ︸
ET−ET,L

).

For a given L, pick T = 1/L to obtain error C(L−(p+1)) (up to log
factors)



Conclusion: metals

For interpolation, order as expected, but bonus order for the energy
For smearing, optimization of T as a function of L
Prove rigorously some results known heuristically in the physical
literature, plus

1 Importance of hypotheses (generically true but violated in some
symmetry-protected systems like graphene)

2 Convergence like Ce−cL4/3
for Gaussian-type smearing (!)

3 Optimal choice of T
Possibly better schemes: Wannier functions, reduced basis (Shirley),
adaptive grids...
Open problems: systems with symmetries, non-smooth Fermi
surfaces (e.g. graphene)
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DOS

Consider now the problem of computing the density of states

DoS of TiN

D(E ) =
 
B

∑
n∈N

δ(εnk − E )dk

= lim
η→0+

1
π

Im
 
B

∑
n∈N

1
εnk − E + iη dk

and more generally of

G(E ) = lim
η→0+

1
H − E + iη

(useful for many electronic
properties)

Solutions as before: interpolation or regularization, but gives non-analytic
D(E )⇒ problem for resonances



A simpler problem: contour deformation to the rescue
Compute the analytic continuation of

I1(z) =
ˆ
R

φ(ε)
z − εdε from Im(z) > 0 to Im(z) < 0

When z = E + iη, η > 0,

φ(ε)
z − ε = φ(ε) E − ε+ iη

(E − ε)2 + η2

Bump of height 1/η, width η around ε = E
Numerical integration needs N � 1

η quadrature points
Continuation past η = 0 impossible once discretized

Solution: contour deformation
E + iη

ε



A more complicated problem
Compute the analytic continuation of

I2(z) =
ˆ
R

φ(k)
z − ε(k)dk from Im(z) > 0 to Im(z) < 0

Eg if ε(k) = k2, singularities near the Fermi surface k = ±
√

E

0−
√
E + iη

√
E + iη

k

More generally, at z = E + iη, if k0 is a point of the Fermi surface
ε(k0) = E , singularity at

k = k0 + iη
ε′(k0) + O(η2)

Need ε′ 6= 0, no continuation possible otherwise (van Hove
singularity, zero group velocity)



One band, multiple dimensions: Brillouin zone deformation

Lemma

Let A(k) be a (2π)d− periodic function, analytic in an open set
U = Rd + i [−η, η]d . Then, for all periodic and smooth functions
ki (k) : Rd → [−η, η]d , we have

ˆ
[−π,π]d

A(k)dk =
ˆ

[−π,π]d
A(k + iki (k)) det(1 + ik ′i (k))dk

Proof:

I(α) =
ˆ

[0,2π]d
A(k + αki (k)) det(1 + αk ′i (k))dk,

is analytic and constant in α ∈ [−1, 1] ⇒ I(i) = I(0).

Take ki such that k + iki (k) avoids
the Fermi surface:

ki = −α∇ε(k)χ(ε(k)− E )

where χ is a cutoff function and E
the energy of interest.

3 2 1 0 1 2 3

kx

3

2

1

0

1

2

3

ky

k_i(k)



The full problem

G0(r , r ′; z) =
ˆ

BZ

∞∑
n=1

e ik(r−r ′)unk(r)unk(r ′)
z − εnk

dk

deformed with k → k + iki (k) with

ki (k) = −α
∑

n
χ(εnk − E )∇εnk

where χ is a cutoff function and E the energy of interest.

Can continue numerically near E if there are no van Hove singularities
(crossing or bands with zero gradient at the “Fermi surface”
{k, εnk = E})

Only requires unit cell computations
Exponential convergence wrt Brillouin zone sampling
Natural generalization of complex scaling to periodic systems: when
H0 = − 1

2 ∆, ∇ε(k) = k, compare with complex scaling k → e−iαk



Example: 1D diatomic chain

H0 =



. . . . . . . . .
1 Ea 1

1 Eb 1
1 Ea 1

1 Eb 1
. . . . . . . . .



−0.25
0.00
0.25

−0.25
0.00
0.25

Im
(z

)

−2 0 2
Re(z)

−0.25
0.00
0.25

−5.0

−2.5

0.0

2.5

5.0

Top to bottom: periodic Green functions with
(a) no deformation, (b) deformation at fixed E = 2, (c) deformation at

E = Re(z).



Example: tight-binding model of graphene
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Bonus: resonances

Consider a local impurity: H = H0 + V
Resonances are poles of the analytic continuation of matrix elements
of G(z) = 1/(z − H) from Im(z) > 0 to Im(z) < 0
Can use resolvent/Dyson formula:

G(z) = G0(z)(1− VG0(z))−1

Need to compute analytic continuation of G0(z) ⇒ contour
deformation



Example: adatom on 2D surface

H0: graphene sheet + isolated adatom. V : graphene-adatom coupling

det(1− VG0(z))

−4 −2 0 2 4
Re(z)

−0.5

0.0

Im
(z

)

−2.5
−2.0
−1.5
−1.0
−0.5
0.0



Example: adatom on 2D surface
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Perspectives

Methodology
Avoid expensive sums over eigenstates (Sternheimer formalism ⇒
only iterative preconditioned eigen/linear problems)
Find poles efficiently (nonlinear eigenvalue problem)
Extend to TDDFT
Implement in DFT codes

Applications
Include resonant states in basis set expansions?
Materials science: conductivity?
General scattering problems?
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