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@ Supercells and thermodynamic limits



Brillouin zone sampling

Consider non-interacting electrons in a perfectly periodic Hamiltonian
H= —%A + V with lattice R, and a L x L x L supercell

@ Because of periodicity, eigenstates can be searched as Bloch waves

Ui(r) = €% u(r)

where uy is cell-periodic and k is in the discrete Brillouin zone

. L-1
BL=14Y kaj ki€ 0. =~
i=1

@ Yields eigenstates
H¢nk = €nk¢nk



Electrons in a supercell

Occupied states are those for which g, < ef, where

LPNe = Z L(enk < eF)
keB,neN

with total energy

L*Et = Z enkl(enk < €F)
keB,neN

When L — oco:

lim Ef = ][ Z€nk]1(€nk < ef)dk
B

L—oo neN
where N = ][ Z]l(a,,k < ef)dk
B neN

What is the speed of convergence with respect to L? Can it be improved?J

Major practical issue (second source of errors after pseudopotentials)



Band structure
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© Insulators



Numerical analysis: the case of insulators

@ In a gapped system (insulator, semiconductor),

inf en, 41,k —Supen,k => & > 0,
keB keB

and so there are exactly N, bands filled at each k:

Nel
E= Z]iankn(gnk < er)dk = ]iZSnkdk
n n=1

Theorem (Gontier-Lahbabi '16)
Under suitable hypotheses on V., there is a« > 0, C > 0 such that

|E — Ef| < Cemot




Ideas of the proof: Riemann sums of periodic functions
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o For a periodic f, what is the error made by

L-1

27
2
/ F(x)dx ~ == S f(2rk/L)
0 L k=0

@ Usual estimates (Taylor): O(1/L)
@ But large error cancellation: quadrature exact for €™ |n| < L



(Ideas of the proof: exponential convergence)

Theorem (Classical: Trefethen-Weideman '14, Gontier-Lahbabi '16)

Q Iff is periodic and smooth, then the integration error is O(L=P) for
all p

@ If f is complex analytic on the strip R + [—A, A]i, then the
integration error is O(e"AL), B a universal constant.

(proof: regularity <= decay of Fourier coefficients)

Ney
E= ][ > emcdk
B n=1

@ In general, e,k is smooth (and even complex analytic on a strip)
outside eigenvalue crossings €nx = €n' k

@ But sums of eigenvalues are smooth when e k < en, 41,k

1

E = TPu,(HOHdK,  Puy(H) = 5 D3~ Ho) 1
B ™ Je

c
R
T T
ik v ENetk | ENei+1k 0




© Metals



Metals and Fermi surface

In metals, there is no gap

E= Z][Enk]lank<€;r el—Z][ (enk < eF)dk

Key concept: Fermi surface
5(5[:) = U,,S,,(EF), 5,,(6[:) = {k € B,epx = EF}.
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Periodic table of Fermi surfaces

http://www.phys.ufl.edu/fermisurface/periodic_table.html
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http://www.phys.ufl.edu/fermisurface/periodic_table.html

S(er) = UpSn(er), Sn(er) ={k € B,epk = ef}.

Q S(er) # 0 (metal)
Q S,(er) N Sy (er) = 0 (no crossing on Fermi surface)
@ Venk # 0 on Sy(er) (no flat bands)

@ Excludes semi-metals (graphene) and highly symmetric systems (free
electron gas)

@ No crossing: €, is smooth on a neighborhood of S,(eF)

o No flat bands: S = U,e, }({eF}) is a smooth surface



Density of states

Theorem (Co-area formula, integration over level sets)

Ifk — f(k)/|VE(K)| is L,

= f(k) o 53
]if(k)dk - /]R </El({e}) |VE(k)| d (k)> d
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Error analysis for interpolation

@ Approximate e, by an interpolated e”, with order pona L x L x L
grid and integrate

EL = Z][ eLP(ehd < eb)dk
B
n

N = Z]in(gﬁ’kq < eb)dk
n

@ Interpolate integrand with order p and domain of integration with
order g

o Most often used in practice: p =2,q = 1 (Blochl's corrections ~
higher-dimensional Euler-MacLaurin)

Theorem
There is C > 0 such that

L
ler —er| < =)




Error analysis for interpolation
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L
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(Ideas of the proof: error on the Fermi level)

Approximate integrated density of states

Le) = Z][ 1(e59 < e)dk
n /B

ek is defined by N't(ek) = Noy = N(eF).
€nk is smooth near e, so Nt and NV are O(L9*1)-close near . From
N'(eg) = D(ef) > 0, it follows that

L
|€F - €F| —= Lq+]_

For the energy:

—E= Z][ — enm)1(e5? < eb)dk

bulk,O(L—(P+1))

+ Z][ en(1(e57 < eb) — 1(en < eF))dk
/B

surface,O(L—(a+1))



(Ideas of the proof: error on the energy)

surface error = Zf Enk(]l(eﬁl’(q <eb) —1(en < eF))dk
B
n

Naively, this is controled by the size of the integration domain so
O(L~=(at1), but

surface error = Z][(s,,k —er)((ehd < eb) — I(enm < eF))dk
—~ /B

+er(WH(EE) = N(er))
- O(L*(z‘”;;

O
This trick is special for the energy (“the energy is variational in the Fermi
surface”), only O(L=(971) for other quantities (Fermi level, density...)



@ Smearing



Fermi-Dirac

1.0 =" Gaussian
* MP1
- MP2

T Enk — EF
E :Z]ienkf< = )dk S 08l

=

T
Enk — €
N = E ][f(F> dk
n /B T 0.0

@ f(x) is an approximation of Heaviside(—x)
e T is a regularization parameter (physically, a temperature)

@ The integrand is now smooth, and therefore efficiently computed by
Riemann sums: E7-t

@ Two sources of errors:

ETt—E| < |ET—E| +|ETt - ET|
N—— ———

smearing error  quadrature error



Smearing error

A smearing function is of order p if

+o00
/ (F(2) — 1( < 0))P(e)de = 0
for any polynomial P of degree p — 1.
Several choices in the literature: Fermi-Dirac, Gaussian smearing (order
1), Methfessel-Paxton (higher order)...

If f has decaying tails and is of order p, there is C > 0 such that

lel —ep| < CTPH!

|ET — E| < cTPH!




(Ideas of the proof)

Formally, using the co-area formula,

NT(e) = Z][ (5"" )dk—éf(gl;g) D(<')de’
= T/ f(x)D(e + Tx)dx

f has decaying tails, so D is evaluated T-close to €, around which D can
be expanded into Taylor series, and therefore

NT(e) = N(e) = T/(f(x) ~1(x < 0))D(e + Tx)dx
R
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(Quadrature error)

- ek —EF ek —EF
E :Z][E,,kf % dk, N:Z][f % dk
n B n B

o Integrand smooth, approximate by Riemann sums E7-L ¢T:t

Theorem (Classical: Trefethen-Weideman '14, Gontier-Lahbabi '16)

If g is complex analytic on a strip Sp = R3 + i[—A, A], then the error
between its integral and Riemann sum is bounded by

C (SUP g(Z)) et

z€S)

Find an analytic continuation of
Enk —EF
k) = wf | ———
s = Y euf ()

@ Fermi-Dirac f(x) = (1 + €*)~! analytic on a strip (poles at
(2Z + 1)7i)
@ Gaussian f(x) = erfc(x)/2 entire



(Analytic properties of the integrand)

g(z) = Tr§£ M ((A—er)/T)(X — Hy)tdA
c
But (A — H,)™! is not trace-class (g, ~ n*9)... finally
B(z) = b A+ D=2/ T) T [(3 = H) ™ (E + H) 7] 02

is an analytical continuation of g(k) = >, enf (@)



Sampling of smeared quantities

Theorem

The integrand is complex analytic in k, on a strip of size O(T)
(Fermi-Dirac smearing), and on the whole complex plane (Gaussian-type
smearing).

There is C(T), c(T) such that

|ET,L _ ET| < C(T)e—c(T)LB

left —eF| < C(T)e M

with 3 =1 (Fermi-Dirac) or § = 4/3 (Gaussian-type)

Total error similar in spirit to

|E_ ET,L

S C( Tp+1 + e—cTL )
——" ~——
E—ET ET—ET.L

For a given L, pick T = 1/L to obtain error C(L~(P™1) (up to log
factors)



Conclusion: metals

For interpolation, order as expected, but bonus order for the energy

For smearing, optimization of T as a function of L

Prove rigorously some results known heuristically in the physical
literature, plus

© Importance of hypotheses (generically true but violated in some

symmetry-protected systems like graphene)

@ Convergence like Ce=t"" for Gaussian-type smearing (!)

© Optimal choice of T
Possibly better schemes: Wannier functions, reduced basis (Shirley),
adaptive grids...

(]

Open problems: systems with symmetries, non-smooth Fermi
surfaces (e.g. graphene)



© Analytic continuation



DOS

Consider now the problem of computing the density of states

band energy (eV)

1 ] /T 1

ANED

w4 -
I

TN

DoS of TiN

L

D(E) = ][ > 6(enk — E)dk
B neN
= lim lIm ;,dk
n—0+t T BT Enk — E+in

and more generally of

G(E) :nll—>n8+ H—E+i7]

(useful for many electronic
properties)

Solutions as before: interpolation or regularization, but gives non-analytic

D(E) = problem for resonances



A simpler problem: contour deformation to the rescue

Compute the analytic continuation of

C)

RZ—E

/1(2)

de  from Im(z) > 0 to Im(z) <0

e When z=E +in, n > 0,

jf)g - ‘25(5)(15—5;:772

Bump of height 1/7, width 7 around ¢ = E
@ Numerical integration needs N > % quadrature points
@ Continuation past = 0 impossible once discretized

Solution: contour deformation

E+ine
—Hnli )




A more complicated problem

Compute the analytic continuation of

h(z) = A zf(f()k)dk from Im(z) > 0 to Im(z) < 0

Eg if (k) = k2, singularities near the Fermi surface k = £V E

/ \ k
TR LA
— E_|_Z'(].T 0 \\\ ///

@ More generally, at z = E + in, if kg is a point of the Fermi surface
e(ko) = E, singularity at

k=k+ 505 4 o(P)

@ Need &’ # 0, no continuation possible otherwise (van Hove
singularity, zero group velocity)



One band, multiple dimensions: Brillouin zone deformation

Lemma

Let A(k) be a (2rr)¢— periodic function, analytic in an open set
U =R+ i[-n,n]9. Then, for all periodic and smooth functions
ki(k) : RY — [—n,n]9, we have

/ A(K)dk = / A(k + iki(K)) det(1 + ik! (k))dk
[, "

Proof:
(o) = / A(k + ak;(k))det(1 + ak!(k))dk,
[0,27]d
is analytic and constant in « € [—1,1] = /(i) = /(0). O

Take k; such that k + iki(k) avoids
the Fermi surface:

k = —aVe(k)x(e(k) — E)] :

where x is a cutoff function and E
the energv of interest.



The full problem

1)
G r, r/; 7) = / e nk n dk
of ) - ; Ea—

deformed with k — k + ik;(k) with

ki(k) = —aZX(Enk — E)Venk

where x is a cutoff function and E the energy of interest.

Can continue numerically near E if there are no van Hove singularities
(crossing or bands with zero gradient at the “Fermi surface”
{k,enk = E})

@ Only requires unit cell computations

@ Exponential convergence wrt Brillouin zone sampling

@ Natural generalization of complex scaling to periodic systems: when
Ho = —3A, Ve(k) = k, compare with complex scaling k — e~k



Example: 1D diatomic chain

1 E 1
Ho = 1b E, 1
1 E 1
0.25
—0 25 95
< 025
v 0.00 0.0
—0 25
oo _ .
0.00
025 5.0
-2 0
Re(z)

Top to bottom: periodic Green functions with
(a) no deformation, (b) deformation at fixed E = 2, (c) deformation at
E = Re(2).



Example: tight-binding model of graphene
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Bonus: resonances

o Consider a local impurity: H = Hy + V

@ Resonances are poles of the analytic continuation of matrix elements
of G(z) =1/(z — H) from Im(z) > 0 to Im(z) <0

o Can use resolvent/Dyson formula:
G(2) = Go(2)(1 — VGo(2)) ™

o Need to compute analytic continuation of Go(z) = contour
deformation



Example: adatom on 2D surface

Hp: graphene sheet + isolated adatom. V': graphene-adatom coupling

det(1 — VGo(2))

0.0 L@J} H

2 4

R A=

Im(z)

—0.5+



Example: adatom on 2D surface




Methodology

@ Avoid expensive sums over eigenstates (Sternheimer formalism =
only iterative preconditioned eigen/linear problems)

e Find poles efficiently (nonlinear eigenvalue problem)
o Extend to TDDFT

@ Implement in DFT codes

Applications
@ Include resonant states in basis set expansions?
@ Materials science: conductivity?
@ General scattering problems?
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