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Sources of Uncertainty in DFT

Introduction

@ Density Functional Theory (DFT) used as reference for molecular
dynamics simulations

@ Accuracy depends on chemical system, quantity of interest, and
functional choice

Plan: Design a Bayesian Inference model to infer a distribution on an
ensemble of DFT predictions using different approximations
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Sources of Uncertainty in DFT

Exchange Correlation

Chemical
Accuracy

/
Generalized Gradient
Approximation (GGA)

Local Density
Approximation (LDA)

i

Hartree
World

@ Kohn Sham DFT is exact, but the true exchange correlation
functional, Exc[p], is unknown

@ There are many approximations to E..[p] with a range of accuracy
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Sources of Uncertainty in DFT

Long Term Applications

o Multiscale modelling of
materials in extreme
environments

e Uncertainty will be be
propagated to a larger scale
to inform molecular
dynamics simulations

@ Functional Approximation design

o Multifidelity DFT predictions
o determine the best subset of functionals and their relative accuracy
o indicate when a high rung functional approximation is necessary
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Existing Approaches to UQ for DFT

Regression

One approach to error estimation in DFT [Lejaeghere, 2020]:

- —X=Y
[ Best

Experimental Data Fit

f_/

Y = a + b X + ¢

T

DFT Predictions sl

@ Use a linear fit to separate predictable error (a and b) from “random”
error (¢)

uQ for DFT June 22, 2022 7/27



Existing Approaches to UQ for DFT

Bayesian Error Estimation Functionals (BEEF)

Error representation via functional ensemble [Christensen et al.,
Wellendorff et al., 2020]:
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o Fit an optimal functional using databases
o Create an ensemble with o2 ~ error of the functional against the data
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Bayesian Inference Approach

Bayesian Modelling

Consider a chemical system, Y, and some quantity of interest (i.e.
atomization energy) with unknown true value v.

@ Assumption:
o Experimental measurements and theoretical predictions are distributed
around v in some pattern that can be represented by a statistical model
@ Approach:

o Relate the data to v with statistical model
o Obtain probability distribution for v
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Bayesian Inference Approach

Our Approach

We will adapt a method used by Tebaldi et al. [2005, 2009] for UQ in
climate models. The idea is to

@ Use predictions by multiple functionals to infer a distribution on a
Quantity of Interest
@ Leverage cases where high level theory is available

@ Based on the spread of DFT predictions around the high level data for
chemical compound X, infer a distribution on predictions for chemical
compound Y
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Bayesian Inference Approach

Preliminary Results
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Bayesian Inference Approach

Bayes' Law
Posterior Prior
Distribution Likelihood Distribution

|

P(Parameters| Data) o P(Data |Parameters) P(Parameters)

In our case, the data is

Xo = Reference data for chemical system X

Xj = DFT prediction by j for system X

<

= DFT prediction by j for system Y

where j = Functional j
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Bayesian Inference Approach

Components of a Simple Model

Likelihoods X~ N(ul, i)
Vi~ N(v+B0G = 1), (63)™h)

)\1, ...,)\M ~ Ga(a)\, b>\)
Priors W, v, B~ constant, uninformative
¢7 ay, b)x ~ Ga(aa b)

Fixed a, b, \g!
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Bayesian Inference Approach

Interpretation of Parameters

Xo ~ Nt
Likelihoods Xi o~ N(u,Nh)
YilXj o~ N (400G = 1), (0A) )

@ /1 — exact value of QOI for system X

@ 1 — exact value of QOI for system Y

@ )\; — confidence in functional approximation j
°

3, ¢ — controls of correlation between X and Y
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Bayesian Inference Approach

How does the model balance demands?
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Bayesian Inference Approach

Possible Limitations

@ Zero bias assumption

o All predictions and experimental data are assumed to be centered on
the exact value for the QOI

Independence assumption
o Functional approximations are assumed to be independently distributed
about exact value
@ Priors

o There is some disagreement as to whether the Gamma prior is
uninformative [Gelman, 2006]

Simplicity of precision/confidence parameters

o It is very likely the “best” functional approximation will be different for
Xand Y
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Bayesian Inference Approach

Inference

B Chains

@ The parameter set is small . \
enough that posterior samples .
can be obtained using MCMC - W

o Gibbs sampling is used for T e e p— —

nearly all parameters .

o Exception: ay and by, are - W
updated with Metropolis - -
sampling )
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Results
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Results

When the model works well...
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Results

When the model works well...

X: CH3 (Radical)

Y: CH, (Biradical)
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Overconfid

Results
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Results

When the model is confidently wrong...

X: SiaHg (Saturated) Y: CH, (Saturated)
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Results

Misleading Data...
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Results

Compound Type and Error
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Next Steps

Current and Future Work

The current model is limited by...

@ The assumption that all DFT predictions are distributed with the
same mean
e Plan: We can adapt our parameter choice to capture bias in functional
approximation classes
@ A lack of procedure for checking the accuracy of the posterior mean
and width
e Plan: Develop a cross validation procedure to quantify inference
success in the absence of reference data for Y
@ Only a single point of reference (System X)

e Plan: We can incorporate multiple reference systems and QOI into our
inference model
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Climate to Quantum

X Y
Climate Current Future
Science Temperature | Temperature
Quantum Reference Unknown
Chemistry Chemical Chemical
Compound Compound
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Let our set of parameters be 6.

With some assumptions about independence, we can factorize the
likelihood and prior:

P(Data |8) = P(Y |X,X0,0) P(X |Xo,0) P(Xo |6)

M M
= 1120, 100 TT205[6) 206 10
j=1 Jj=1

P(9) = P(61) ... P(6,)
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Mean of the Conditional for Y

We assume that predictions for Y are drawn from a conditional
distribution:

1
Yi|X;i ~N(v+B(Xi —pn), —
I ( J qﬁ)\j)
The construction of the mean:

o follows from an assumption that [X, YJ]T has a multivariate Gaussian
distribution

@ resembles (but is not the same as) linear regression
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Comparison with Regression

We can compare the inference model to a similar linear regression set up:

Slope Error of jth

prediction
l Kforx
(Yi—v) = B (Xi—p) +¢
/ g ~ N(0,A71)

Error of jth
prediction
for Y Noise
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Comparison with Regression

A related regression formulation:

Regression Example

(Vi—v) = BG—1)+g
¢ ~ N(0,A71)
@ Our inference model is more 0 £
flexible: T
e X; is treated as a random ’ J Z | | |
variable

o The variance of the random
variables is dependent on j
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Predictors of Inference Error: Subset DFT Mean
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Predictors of Inference Error: Subset DFT Mean
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Multireference Model

o Vit G2 CQy
Likelihood x@| ~ N( nl, |c2 v2 Oy )
1 Cly Oy Vyy

@ We can choose the expressions for elements of the covariance matrix
to model the relationships between the systems

@ Prior distributions on the parameters can be used to incorporate
chemical information into the inference

uQ for DFT June 22, 2022 11/11



	Sources of Uncertainty in DFT
	Existing Approaches to UQ for DFT
	Bayesian Inference Approach
	Results
	Next Steps
	Appendix

