
Practical error bounds for properties in plane-wave electronic structure
calculations

Éric Cancès, Geneviève Dusson, Gaspard Kemlin, Antoine Levitt

gaspard.kemlin@enpc.fr
PhD student with É. Cancès & A. Levitt,

CERMICS, ENPC & Inria Paris, team MATHERIALS

CECAM UQ, June 22nd 2022, Lausanne



Introduction Mathematical framework Crude error bounds Enhanced error bounds Numerical examples Conclusion

1 Introduction

2 Mathematical framework
Structure of the manifold
Super-operators
Numerical setting

3 Crude error bounds using linearization
Linearization in the asymptotic regime
Error bounds based on operator norms
Error bounds for the forces

4 Enhanced error bounds based on frequencies splitting

5 Numerical examples

Gaspard Kemlin CERMICS & Inria Practical error bounds in electronic structure CECAM UQ 2022 2 / 30



Introduction Mathematical framework Crude error bounds Enhanced error bounds Numerical examples Conclusion

1 Introduction

2 Mathematical framework
Structure of the manifold
Super-operators
Numerical setting

3 Crude error bounds using linearization
Linearization in the asymptotic regime
Error bounds based on operator norms
Error bounds for the forces

4 Enhanced error bounds based on frequencies splitting

5 Numerical examples

Gaspard Kemlin CERMICS & Inria Practical error bounds in electronic structure CECAM UQ 2022 3 / 30



Introduction Mathematical framework Crude error bounds Enhanced error bounds Numerical examples Conclusion

Quantum mechanics of noninteracting electrons

We consider the stationary Schrödinger equation{
H0φi = εiφi , ε1 ⩽ · · · ⩽ εN ,

∥φi ∥L2 = 1,
H0 := −1

2∆ + V

where φi is the wavefunction associated to electron i . Then,

E =
N∑

i=1

εi is the total energy;

ρ(x) =
N∑

i=1

|φi (x)|2 is the total electronic density.
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Numerical resolution

Find φi ∈ CN , s.t H0φi = εiφi , ε1 ⩽ · · · ⩽ εN

Orbitals φi are not unique (degeneracies, phase factor) ⇝ better to work with the projectors onto the
space spanned by the (φi )1⩽i⩽N :

P :=
N∑

i=1

|φi ⟩ ⟨φi | ∈ CN ×N
herm .

P is a rank N orthogonal projector (density matrices);
the total energy then writes

E =
N∑

i=1

εi =
N∑

i=1

⟨φi |H0φi ⟩ = Tr(H0P),

and is minimal for this P among all rank N orthogonal projectors.
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We have two equivalent problems:{
H0φi = εiφi , ε1 ⩽ · · · ⩽ εN ,

∥φi ∥L2 = 1,
⇔ min

P∈MN
Tr(H0P)

where
MN :=

{
P ∈ CN ×N ∣∣ P = P∗, Tr(P) = N, P2 = P

}
is the set of rank N orthogonal projectors. It is a Grassmann manifold.
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General framework

In reality, electrons do interact together so that the general form of the energy is

E(P) := Tr (H0P) + Enl(P),

where
P ∈ CN ×N

herm is a density matrix;
H0 is the core Hamiltonian;
Enl models the electron-electron interaction depending on the model (Kohn-Sham DFT – local
and semi-local functionals –, Hartree-Fock, Gross-Pitaevskii, . . . ).

min
P∈MN

E(P) = Tr (H0P) + Enl(P),

MN :=
{

P ∈ CN ×N
∣∣ P = P∗, Tr(P) = N, P2 = P

}
.
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In practice, the required N to achieve high precision is way too high. To solve this issue, we use
subspaces of smaller dimension to compute a variational approximation of P∗, the reference solution in
MN .

⇝ we focus on discretization error, but there are other sources (models, arithmetics, . . . )

Question :
How to evaluate the error made on quantities of interest (QoI) ? We focus here on the energy and the
forces.
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Assumptions

min
P∈MN

E(P) = Tr (H0P) + Enl(P),

MN :=
{

P ∈ CN ×N
∣∣ P = P∗, Tr(P) = N, P2 = P

}
.

Let H :=
(
CN ×N

herm , ∥·∥F

)
, endowed with the Frobenius scalar product Tr(A∗B).

Assumption 1 Enl : H → R is twice continuously differentiable, and thus so is E .
Assumption 2 P∗ ∈ MN is a nondegenerate local minimizer in the sense that there exists some η > 0

such that, for P ∈ MN in a neighborhood of P∗, we have

E(P) ⩾ E(P∗) + η ∥P − P∗∥2
F.
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Structure of the manifold: the tangent space

MN is a smooth manifold, we can define its tangent space (it is a R vector space). ΠP is the
orthogonal projection on TPMN :

MN

TPMN

ΠP

δP
P

•
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First order condition

min
P∈MN

E(P) = Tr (H0P) + Enl(P)

The first-order optimality condition is ΠP∗ (H∗) = 0, which gives

P∗H∗(1 − P∗) = (1 − P∗)H∗P∗ = 0 ,

where H∗ := ∇E(P∗).

In particular, [H∗,P∗] = 0.
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Second order condition

min
P∈MN

E(P) = Tr (H0P) + Enl(P)

The second order optimality condition reads

∀ X ∈ TP∗ MN , ⟨X , (Ω∗ + K∗)X⟩F ⩾ η ∥X∥2
F .

K∗ := ΠP∗ ∇2E(P∗)ΠP∗ ;
the operator Ω∗ : TP∗ MN → TP∗ MN is defined by,

∀ X ∈ TP∗ MN , Ω∗X := −[P∗, [H∗,X ]].

⇝ Ω∗ + K∗ can be interpreted as the Hessian of the energy on the manifold, Ω∗ represents the
influence of the curvature.

Gaspard Kemlin CERMICS & Inria Practical error bounds in electronic structure CECAM UQ 2022 13 / 30



Introduction Mathematical framework Crude error bounds Enhanced error bounds Numerical examples Conclusion

Second order condition

min
P∈MN

E(P) = Tr (H0P) + Enl(P)

The second order optimality condition reads

∀ X ∈ TP∗ MN , ⟨X , (Ω∗ + K∗)X⟩F ⩾ η ∥X∥2
F .

K∗ := ΠP∗ ∇2E(P∗)ΠP∗ ;
the operator Ω∗ : TP∗ MN → TP∗ MN is defined by,

∀ X ∈ TP∗ MN , Ω∗X := −[P∗, [H∗,X ]].

⇝ Ω∗ + K∗ can be interpreted as the Hessian of the energy on the manifold, Ω∗ represents the
influence of the curvature.

Gaspard Kemlin CERMICS & Inria Practical error bounds in electronic structure CECAM UQ 2022 13 / 30



Introduction Mathematical framework Crude error bounds Enhanced error bounds Numerical examples Conclusion

Plane-wave DFT

Throughout the talk, we perform numerical tests in DFTK1, a PW DFT tool-kit for Julia. In short:
we consider a periodic system with lattice R, ω is the unit cell and R∗ the reciprocal lattice;
we solve a variational approximation of the KS-DFT equations in the finite dimensional space

XEcut :=
{

eG , G ∈ R∗
∣∣∣ 1

2 |G|2 ⩽ Ecut

}
,

where, for G ∈ R∗,

∀ r ∈ R3, eG(r) := 1√
|ω|

exp (iG · r) .

1https://dftk.org, developed by M. F. Herbst and A. Levitt.
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Numerical setting

FCC phase of the silicon crystal, within LDA approximation and 2 × 2 × 2 Brillouin zone
discretization;
we compute a reference solution for Ecut,ref = 125 Ha ⇒ Ecut,ref defines N the size of the reference
space and we obtain the reference orbitals Φ∗, the energy E∗, density ρ∗, the forces F∗ on each
atoms, etc. . .
for smaller Ecut’s, we compute the associated variational approximation and we measure the error
on different quantities:

|E − E∗| , ∥ρ− ρ∗∥L2 , |F − F∗|
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Linearization: main idea

Assume you want to solve R(x) = 0 with R a differentiable quantity, with Jacobian JR . Then, around
a solution x∗, it holds at first order

R(x) = R(x∗) + JR(x∗)(x − x∗),

from which we deduce
(x − x∗) ≈ JR(x∗)−1R(x)

Newton’s algorithm :
x k+1 = x k − JR(x k)−1R(x k)
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Linearization: application to our model

Ω∗ + K∗ is the Jacobian2 of P 7→ ΠPH(P) = R(P) at P∗.

ΠP(P − P∗) = (Ω∗ + K ∗)−1R(P)

Newton’s algorithm : extend the definition of Ω and K outside of P∗ and let R be a retraction to the
manifold

Pk+1 = RPk

(
Pk −

(
Ω(Pk) + K(Pk)

)−1 R(Pk)
)

2Eric Cancès, Gaspard Kemlin, Antoine Levitt. Convergence analysis of direct minimization and self-consistent iterations.
SIAM Journal of Matrix Analysis and Applications, 42(1):243–274 (2021).

Gaspard Kemlin CERMICS & Inria Practical error bounds in electronic structure CECAM UQ 2022 18 / 30



Introduction Mathematical framework Crude error bounds Enhanced error bounds Numerical examples Conclusion

Linearization: application to our model

Ω∗ + K∗ is the Jacobian2 of P 7→ ΠPH(P) = R(P) at P∗.

ΠP(P − P∗) = (Ω∗ + K ∗)−1R(P)

Newton’s algorithm : extend the definition of Ω and K outside of P∗ and let R be a retraction to the
manifold

Pk+1 = RPk

(
Pk −

(
Ω(Pk) + K(Pk)

)−1 R(Pk)
)

2Eric Cancès, Gaspard Kemlin, Antoine Levitt. Convergence analysis of direct minimization and self-consistent iterations.
SIAM Journal of Matrix Analysis and Applications, 42(1):243–274 (2021).

Gaspard Kemlin CERMICS & Inria Practical error bounds in electronic structure CECAM UQ 2022 18 / 30



Introduction Mathematical framework Crude error bounds Enhanced error bounds Numerical examples Conclusion

Compare DFTK QoI for given Ecut < Ecut,ref and the QoI after one Newton step in the reference grid.
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10−4

100

Ecut

|ESCF − E∗|
|ENewton − E∗|

0 20 40 60 80
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10−8

10−5
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101

Ecut

∥ρSCF − ρ∗∥L2

∥ρNewton − ρ∗∥L2

0 20 40 60 80

10−13

10−10

10−7

10−4

Ecut

|FSCF − F∗|
|FNewton − F∗|

⇝ the asymptotic regime is quickly established: ΠP(P − P∗) = (Ω∗ + K∗)−1R(P)
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Error bounds based on operator norms

ΠP(P − P∗) = (Ω∗ + K∗)−1R(P)

First crude bound : ∥P − P∗∥F and ∥R(P)∥F cannot be
directly compared (not the same unit) but we have

∥P − P∗∥F ≈ ∥ΠP(P − P∗)∥F

⩽
∥∥(Ω∗ + K∗)−1∥∥

op
∥R(P)∥F .

⇝ the bounds are several orders of magnitude above the
error. . .

20 40 60 80
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10−3

10−2

10−1

100

101

Ecut

∥ΠP (P − P∗)∥F
∥((Ω∗ +K∗)|TP∗MN

)−1∥op∥R(P )∥F
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Error bounds based on operator norms

ΠP(P − P∗) = (Ω∗ + K∗)−1R(P)

One can change the metric with M ≈ 1 − 1
2 ∆

∥∥M1/2ΠP(P − P∗)
∥∥

F

⩽
∥∥M1/2(Ω∗ + K∗)−1M1/2

∥∥
op

∥∥M−1/2R(P)
∥∥

F
.

⇝ the bounds are several orders of magnitude above the
error. . . but have the same rate
⇝ asymptotically

∥∥M−1/2R(P)
∥∥

F
∼
∥∥M1/2ΠP(P − P∗)

∥∥
F
,

though not upper bound nor guaranteed. The same
holds for

∥∥M−1R(P)
∥∥

F
∼ ∥P − P∗∥F.

20 40 60 80
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10−3

10−2

10−1

100

Ecut

∥M1/2ΠP (P − P∗)∥F
∥M−1/2R(P )∥F

∥M1/2
∗ ((Ω∗ +K∗)|TP∗MN

)−1M
1/2
∗ ∥op

×∥M−1/2R(P )∥F
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Error bounds for the forces

Forces are decomposed into two components (local and non-local)3.

Local forces: Let F loc
j,α(P) be the local forces on atom j

in direction α. It holds (at first order):

F loc
j,α(P) − F loc

j,α(P∗) = dF loc
j,α(P) · ΠP(P − P∗);

∣∣F loc
j,α(P) − F loc

j,α(P∗)
∣∣ ⩽ ∥∥dF loc

j,α(P)
∥∥

TP MN →R ∥P − P∗∥F .

⇝ several orders of magnitude above !

3This comes from the pseudopotentials approximations and Hellmann-Faynman theorem.
Gaspard Kemlin CERMICS & Inria Practical error bounds in electronic structure CECAM UQ 2022 21 / 30



Introduction Mathematical framework Crude error bounds Enhanced error bounds Numerical examples Conclusion

Error bounds for the forces

Forces are decomposed into two components (local and non-local)3.

Local forces: Let F loc
j,α(P) be the local forces on atom j

in direction α. It holds (at first order):

F loc
j,α(P) − F loc

j,α(P∗) = dF loc
j,α(P) · ΠP(P − P∗);

∣∣F loc
j,α(P) − F loc

j,α(P∗)
∣∣ ⩽ ∥∥dF loc

j,α(P)
∥∥

TP MN →R ∥P − P∗∥F .

0 20 40 60 80
10−11

10−8

10−5

10−2

101

Ecut

h
ar
tr
ee
/b

oh
r

|F loc
j,α(P )− F loc

j,α(P∗)|
∥dF loc

j,α(P )∥TPMN→R∥P − P∗∥F

⇝ several orders of magnitude above !

3This comes from the pseudopotentials approximations and Hellmann-Faynman theorem.
Gaspard Kemlin CERMICS & Inria Practical error bounds in electronic structure CECAM UQ 2022 21 / 30



Introduction Mathematical framework Crude error bounds Enhanced error bounds Numerical examples Conclusion

Error bounds for the forces

Forces are decomposed into two components (local and non-local)3.

Total forces : Combining local and nonlocal forces on all
atoms, we have F (P) ∈ R3N#atoms and

F (P) − F (P∗) = dF (P) · ΠP(P − P∗).

⇝ What happens if we directly replace ΠP(P − P∗) by
M−1R(P) in dF (P) · ΠP(P − P∗)?

⇝ linearization quickly valid;
⇝ even if ΠP(P − P∗) and M−1R(P) are asymptotically equivalent, orange and blue do not match.

3This comes from the pseudopotentials approximations and Hellmann-Faynman theorem.
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Frequency splitting

Let P ∈ MN , then TPMN can be split into low and high frequencies. More precisely, given
Ecut < Ecut,ref , we have

TPMN = ΠEcut TPMN ⊕ Π⊥
Ecut TPMN

∈ ∈ ∈

X = X1 + X2
↕ ↕ ↕
ψ = ψ1 + ψ2

with ψ1 ∈ XEcut , ψ2 ∈ X ⊥
Ecut and XEcut,ref = XEcut ⊕ X ⊥

Ecut .

If P is a solution of the variational problem for a given Ecut, then R(P),M−1R(P) ∈ Π⊥
Ecut TPMN (not

exactly true in practice because of numerical quadrature errors due to exchange-correlation terms.).
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Let us analyze in details the computation of F loc
j,α(P): F loc

j,α(P) = − Tr
(
∂Vloc

∂Rj,α
P
)

so that computing

dF loc
j,α(P) · X for X ∈ TPMN reduces to the scalar product of X against ΠP

∂Vloc

∂Rj,α
.

M−1R(P) is high frequencies;
ΠP(P − P∗) is mainly high frequencies but with low
frequencies components;

ΠP
∂Vloc

∂Rj,α
is mainly low frequencies.

⇝ orange and blue do not match because the error and
the residual don’t have the same support in frequencies,
even if

∥∥M−1R(P)
∥∥

F
∼ ∥ΠP(P − P∗)∥F asymptotically.
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frequencies components;
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∂Rj,α
is mainly low frequencies.

⇝ orange and blue do not match because the error and
the residual don’t have the same support in frequencies,
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Enhanced error bounds

We decompose the error/residual relation onto ΠEcut TPMN ⊕ ΠEcut TPM⊥
N to get[

(Ω + K)11 (Ω + K)12
(Ω + K)21 (Ω + K)22

][
P1 − P∗1
P2 − P∗2

]
=
[

R1
R2

]
.

As the kinetic energy is dominating for high-frequencies, we approximate

(Ω + K)21 ≈ 0 and (Ω + K)22 ≈ M22 ≈
(

−1
2∆ + 1

)∣∣∣
XE⊥

cut

on the tangent space ,

and thus [
(Ω + K)11 (Ω + K)12

0 M22

][
P1 − P∗1
P2 − P∗2

]
=
[

R1
R2

]
.

This yields a new residual, which requires only an inversion on the coarse grid XEcut (M22 being easy to
invert):

RSchur(P) =
[

(Ω + K)−1
11 (R1 − (Ω + K)12 M−1

22 R2)
M−1

22 R2

]
.
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Ferr − F∗ := F (P) − dF (P) · (ΠP(P − P∗)) − F (P∗),

Fres − F∗ := F (P) − dF (P) · (M−1R(P)) − F (P∗),

FSchur − F∗ := F (P) − dF (P) · (RSchur(P)) − F (P∗),

⇝ we win about one order of magnitude in the approxi-
mation of the error of the forces F − F∗.
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Numerical examples
GaAs
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Numerical examples

GaAs TiO2
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Conclusion and take-home messages

The asymptotic regime is quickly established;

error estimates based on operator norms are not good;
in the PW setting, this come from the high frequencies nature of the residual;
using a Schur complement to couple high and low frequencies clearly enhances the approximation
of the error;
we can either compute error bounds or enhance the precision of the QoI;
the coupling between high and low frequencies can be pushed further;
Limits: we do not have guaranteed bounds, but useful in practice, valid asymptotically and for a
cost comparable to a SCF cycle (inverting Ω + K).

Gaspard Kemlin CERMICS & Inria Practical error bounds in electronic structure CECAM UQ 2022 29 / 30



Introduction Mathematical framework Crude error bounds Enhanced error bounds Numerical examples Conclusion

Conclusion and take-home messages

The asymptotic regime is quickly established;
error estimates based on operator norms are not good;
in the PW setting, this come from the high frequencies nature of the residual;
using a Schur complement to couple high and low frequencies clearly enhances the approximation
of the error;

we can either compute error bounds or enhance the precision of the QoI;
the coupling between high and low frequencies can be pushed further;
Limits: we do not have guaranteed bounds, but useful in practice, valid asymptotically and for a
cost comparable to a SCF cycle (inverting Ω + K).

Gaspard Kemlin CERMICS & Inria Practical error bounds in electronic structure CECAM UQ 2022 29 / 30



Introduction Mathematical framework Crude error bounds Enhanced error bounds Numerical examples Conclusion

Conclusion and take-home messages

The asymptotic regime is quickly established;
error estimates based on operator norms are not good;
in the PW setting, this come from the high frequencies nature of the residual;
using a Schur complement to couple high and low frequencies clearly enhances the approximation
of the error;
we can either compute error bounds or enhance the precision of the QoI;
the coupling between high and low frequencies can be pushed further;

Limits: we do not have guaranteed bounds, but useful in practice, valid asymptotically and for a
cost comparable to a SCF cycle (inverting Ω + K).

Gaspard Kemlin CERMICS & Inria Practical error bounds in electronic structure CECAM UQ 2022 29 / 30



Introduction Mathematical framework Crude error bounds Enhanced error bounds Numerical examples Conclusion

Conclusion and take-home messages

The asymptotic regime is quickly established;
error estimates based on operator norms are not good;
in the PW setting, this come from the high frequencies nature of the residual;
using a Schur complement to couple high and low frequencies clearly enhances the approximation
of the error;
we can either compute error bounds or enhance the precision of the QoI;
the coupling between high and low frequencies can be pushed further;
Limits: we do not have guaranteed bounds, but useful in practice, valid asymptotically and for a
cost comparable to a SCF cycle (inverting Ω + K).

Gaspard Kemlin CERMICS & Inria Practical error bounds in electronic structure CECAM UQ 2022 29 / 30



Introduction Mathematical framework Crude error bounds Enhanced error bounds Numerical examples Conclusion

Links

Preprint with more details:
https://hal.inria.fr/hal-03408321

Tutorial:
https://juliamolsim.github.io/DFTK.jl/dev/examples/error_estimates_forces/

Code:
https://github.com/gkemlin/paper-forces-estimator
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Resolution

min
P∈MN

E(P) = Tr (H0P) + Enl(P),

MN :=
{

P ∈ CN ×N
∣∣ P = P∗, Tr(P) = N, P2 = P

}
.

direct minimization

↓

projected gradient onto the constraint manifold

Euler-Lagrange equation

↓

SCF formulation
(H0 + ∇Enl(P))φi = εiφi ,

⟨φi |φj⟩ = δij ,

P =
N∑

i=1

|φi ⟩ ⟨φi |.
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Tangent space

In the decomposition H = Ran(P) ⊕ Ran(1 − P), we have:

P =
[

1N 0
0 0

]
and TPMN :=

{
X =

[
0 ×

×∗ 0

]}
.

A density matrix P ∈ MN can be described with N orbitals (any orthonormal basis of Ran(P)):

P =
N∑

i=1

|φi ⟩ ⟨φi | with ⟨φi |φj⟩ = δij .

Given such a P, an element X of TPMN can be described with N vectors that are all orthogonal to the
φi ’s:

X =
N∑

i=1

|φi ⟩ ⟨ψi | + |ψi ⟩ ⟨φi | with ⟨φi |ψj⟩ = 0 ⇒ ∥X∥2
F = 2

N∑
i=1

∥ψi ∥2

P ∈ MN ↔ (φi )1⩽i⩽N ∈ (CN )N spanning Ran(P)

X ∈ TPMN ↔ (ψi )1⩽i⩽N ∈ (CN )N where ⟨φi |ψj⟩ = 0
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Change of norm : given X ∈ TPMN , one might want to compute ∥MX∥F for a metric M on the
tangent space. This can be translated in terms of orbitals as

MX =
N∑

i=1

|φi ⟩ ⟨Miψi | + |Miψi ⟩ ⟨φi | , ∥MX∥F = 2
N∑

i=1

∥Miψi ∥

where Mi : Ran({φj})⊥ → Ran({φj})⊥ and can eventually depend on the band i . In this talk we will
use (with Π the projection on Ran({φj})⊥ and ti the kinetic energy of band i):

M1/2 ↔ Π(ti − ∆/2)1/2Π ↔ H1/2 norm
M ↔ Π(ti − ∆/2)1/2Π(ti − ∆/2)1/2Π ↔ H1 norm

M−1/2 ↔ (Π(ti − ∆/2)1/2Π)−1 ↔ H−1/2 norm
M−1 ↔ (Π(ti − ∆/2)1/2Π(ti − ∆/2)1/2Π)−1 ↔ H−1 norm
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Extension and computation of super operators

Computing K : K(P) := ΠP∇2E(P)ΠP can be defined at any P =
∑N

i=1 |φi ⟩ ⟨φi | ∈ MN . In terms of
orbitals, this translates into

∀ X ∈ TPMN , K(P)X =
N∑

i=1

|φi ⟩ ⟨δVφi | + |δVφi ⟩ ⟨φi | ,

where X is described by (ψi )1⩽i⩽N ∈ (Ran({φj})⊥)N and

(ψi )1⩽i⩽N 7→ δρ := 2
N∑

i=1

φiψi 7→ δV 7→ (δVφi )1⩽i⩽N .
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Computing Ω : for P =
∑N

i=1 |φi ⟩ ⟨φi | ∈ MN , we define Ω(P) : TPMN → TPMN by

∀ X ∈ TPMN , Ω(P)X = −[P, [H(P),X ]],

where H(P) := ∇E(P). In terms of orbitals it translates into

Ω(P)X =
N∑

i=1

|φi ⟩

〈
(1 − P)

(
H(P)ψi −

N∑
j=1

Λijψj

)∣∣∣∣∣+ hc,

where X is described by (ψi )1⩽i⩽N ∈ (Ran({φj})⊥)N and Λij := φ∗
j H(P)φi (diagonal if P = P∗).
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Analysis What is used in practice

P ∈ MN ↔ Φ = (φi )1⩽i⩽N ∈ (CN )N spanning Ran(P)

X ∈ TPMN ↔ Ψ = (ψi )1⩽i⩽N ∈ (CN )N s.t. ⟨φi |ψj⟩ = 0

∥X∥2
F ↔ 2

N∑
i=1

∥ψi ∥2

∥MsX∥2
F ↔ 2

N∑
i=1

∥Ms
i ψi ∥2 for s = −1,−1/2, 1/2, 1

K(P)X ↔ K(Φ)Ψ = (δVφi )1⩽i⩽N

Ω(P)X ↔ Ω(Φ)Ψ =
(

(1 − P)
(

H(P)ψi −
∑N

j=1 Λijψj

))
1⩽i⩽N
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Mathematical justification for 1D Gross-Pitaevskii

{
−∆ϕ∗ + Vϕ∗ + ϕ3

∗ = λ∗ϕ∗,

∥ϕ∗∥L2
#

= 1, ϕ∗ > 0 on Rd ,

{
−∆ϕN + ΠN

(
VϕN − ϕ3

N
)

= λNϕN ,

∥ϕN∥L2
#

= 1.

Π⊥
ϕN is the orthogonal projector (for the L2

# inner product) onto ϕ⊥
N ;

AN is the self-adjoint operator on ϕ⊥
N defined by AN := (ΩN + KN) where ΩN and KN represent, in

the orbital framework, the super-operators Ω(PN)|TPN M∞ and K(PN)|TPN M∞ . We have

∀ ψN ∈ ϕ⊥
N , ΩNψN = Π⊥

ϕN

(
−∆ + V + ϕ2

N − λN
)
ψN ,(1)

∀ ψN ∈ ϕ⊥
N , KNψN = Π⊥

ϕN

(
2ϕ2

NψN
)

;(2)

M1/2
N is the restriction of the operator Π⊥

ϕN (1 − ∆)1/2Π⊥
ϕN to the invariant subspace ϕ⊥

N .

Proposition
We have

lim
N→∞

∥∥∥M1/2
N (ΩN + KN)−1M1/2

N − IX ⊥
N

∥∥∥
X ⊥

N →L2
#

= 0.
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Guaranteeing bounds

Solve R(x) = 0 with R : Y → Z .

Theorem (Inverse function theorem – Newton - Kantorovicha)

Assume that
DR(x) ∈ L(Y ,Z) is an isomorphism

2
∥∥DR(x)−1

∥∥
Z ,Y ′ L

(
2
∥∥DR(x)−1

∥∥
Z ,Y ′ ∥R(x)Z ′ ∥

)
≤ 1

with L(α) = supy∈B̄(x,α) ∥DR(x) − DR(y)∥Z ,Y ′ .
Then, the problem R(x) = 0 has a unique solution x∗ in the
ball B̄(x , 2

∥∥DR(x)−1
∥∥

Z ,Y ′ ∥R(x)Z ′ ∥). Moreover,

∥x − x∗∥Y ≤ 2
∥∥DR(x)−1∥∥

Z ,Y ′ ∥R(x)Z ′ ∥ .

aGabriel Caloz, Jacques Rappaz. Numerical analysis for nonlinear and
bifurcation problems. Handbook Numerical Analysis, 5:487-637 (1997).

x •

x∗
•

2
∥∥DR(x)−1

∥∥
Z ,Y ′ ∥R(x)Z ′ ∥
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