Practical error bounds for properties in plane-wave electronic structure calculations

Éric Cancès, Geneviève Dusson, Gaspard Kemlin, Antoine Levitt

gaspard.kemlin@enpc.fr PhD student with É. Cancès & A. Levitt, CERMICS, ENPC & Inria Paris, team MATHERIALS

CECAM UQ, June 22nd 2022, Lausanne

European Research Council

1 Introduction

2 Mathematical framework

- Structure of the manifold
- Super-operators
- Numerical setting

3 Crude error bounds using linearization

- Linearization in the asymptotic regime
- Error bounds based on operator norms
- Error bounds for the forces

4 Enhanced error bounds based on frequencies splitting

5 Numerical examples

1 Introduction

2 Mathematical framework

- Structure of the manifold
- Super-operators
- Numerical setting

3 Crude error bounds using linearization

- Linearization in the asymptotic regime
- Error bounds based on operator norms
- Error bounds for the forces

4 Enhanced error bounds based on frequencies splitting

5 Numerical examples

Introduction	Mathematical framework	Crude error bounds	Enhanced error bounds	Numerical examples	Conclusion
○●○○○○		000000	00000	OO	00

Quantum mechanics of noninteracting electrons

We consider the stationary Schrödinger equation

$$\begin{cases} H_0\varphi_i = \varepsilon_i\varphi_i, \ \varepsilon_1 \leqslant \cdots \leqslant \varepsilon_N, \\ \|\varphi_i\|_{L^2} = 1, \end{cases} \qquad H_0 \coloneqq -\frac{1}{2}\Delta + V$$

where φ_i is the wavefunction associated to electron *i*. Then,

•
$$E = \sum_{i=1}^{N} \varepsilon_i$$
 is the total energy;
• $\rho(x) = \sum_{i=1}^{N} |\varphi_i(x)|^2$ is the total electronic density.

Introduction 000000	Mathematical framework	Crude error bounds 000000	Enhanced error bounds	Numerical examples	Conclusion OO
Numerical re	esolution				

Find
$$\varphi_i \in \mathbb{C}^{\mathcal{N}}$$
, s.t $H_0 \varphi_i = \varepsilon_i \varphi_i$, $\varepsilon_1 \leqslant \cdots \leqslant \varepsilon_N$

Orbitals φ_i are not unique (degeneracies, phase factor) \rightsquigarrow better to work with the *projectors* onto the space spanned by the $(\varphi_i)_{1 \le i \le N}$:

$$P := \sum_{i=1}^{N} |\varphi_i\rangle \langle \varphi_i| \in \mathbb{C}_{\mathsf{herm}}^{\mathcal{N} \times \mathcal{N}}.$$

- P is a rank N orthogonal projector (density matrices);
- the total energy then writes

$${\sf E} = \sum_{i=1}^N arepsilon_i = \sum_{i=1}^N raket{arphi_i | {\sf H}_0 arphi_i} = {\sf Tr}({\sf H}_0 {\sf P}),$$

and is minimal for this P among all rank N orthogonal projectors.

Introduction	Mathematical framework	Crude error bounds	Enhanced error bounds	Numerical examples	Conclusion
000●00		000000	00000	OO	00

We have two equivalent problems:

$$\begin{cases} H_0\varphi_i = \varepsilon_i\varphi_i, \ \varepsilon_1 \leqslant \cdots \leqslant \varepsilon_N, \\ \|\varphi_i\|_{\mathsf{L}^2} = 1, \end{cases} \Leftrightarrow \qquad \min_{P \in \mathcal{M}_N} \mathsf{Tr}(H_0 P) \end{cases}$$

where

$$\mathcal{M}_{\mathcal{N}} \coloneqq \left\{ P \in \mathbb{C}^{\mathcal{N} \times \mathcal{N}} \mid P = P^*, \ \operatorname{Tr}(P) = \mathcal{N}, \ P^2 = P \right\}$$

is the set of rank N orthogonal projectors. It is a *Grassmann* manifold.

Introduction 0000€0	Mathematical framework	Crude error bounds 000000	Enhanced error bounds 00000	Numerical examples	Conclusion 00
General frame	ework				

In reality, electrons do interact together so that the general form of the energy is

 $E(P) \coloneqq \operatorname{Tr}(H_0P) + E_{\operatorname{nl}}(P),$

where

- $P \in \mathbb{C}_{herm}^{\mathcal{N} \times \mathcal{N}}$ is a density matrix;
- *H*₀ is the core Hamiltonian;
- E_{n1} models the electron-electron interaction depending on the model (Kohn-Sham DFT local and semi-local functionals –, Hartree-Fock, Gross-Pitaevskii, ...).

$$\begin{split} \min_{P \in \mathcal{M}_N} E(P) &= \operatorname{Tr} \left(H_0 P \right) + E_{\mathsf{nl}}(P), \\ \mathcal{M}_N &:= \left\{ P \in \mathbb{C}^{\mathcal{N} \times \mathcal{N}} \mid P = P^*, \ \operatorname{Tr}(P) = N, \ P^2 = P \right\}. \end{split}$$

Introduction 00000●	Mathematical framework	Crude error bounds 000000	Enhanced error bounds 00000	Numerical examples	Concli 00

In practice, the required N to achieve high precision is way too high. To solve this issue, we use subspaces of smaller dimension to compute a variational approximation of P_* , the reference solution in \mathcal{M}_N .

 \sim we focus on **discretization error**, but there are other sources (models, arithmetics, ...)

ction	Mathematical framework	Crude error bound
00		

In practice, the required N to achieve high precision is way too high. To solve this issue, we use subspaces of smaller dimension to compute a variational approximation of P_* , the reference solution in \mathcal{M}_N .

 \rightsquigarrow we focus on **discretization error**, but there are other sources (models, arithmetics, ...)

Question:

Introd

How to evaluate the error made on quantities of interest (QoI) ? We focus here on the energy and the forces.

1 Introduction

2 Mathematical framework

- Structure of the manifold
- Super-operators
- Numerical setting

3 Crude error bounds using linearization

- Linearization in the asymptotic regime
- Error bounds based on operator norms
- Error bounds for the forces

4 Enhanced error bounds based on frequencies splitting

5 Numerical examples

Introduction	Mathematical framework	Crude error bounds	Enhanced error bounds	Numerical examples	Conclusion
000000	○●○○○○○	000000	00000		OO
Assumptions					

$$\begin{split} \min_{P \in \mathcal{M}_N} E(P) &= \operatorname{Tr} \left(H_0 P \right) + E_{\mathsf{nl}}(P), \\ \mathcal{M}_N &:= \left\{ P \in \mathbb{C}^{\mathcal{N} \times \mathcal{N}} \mid P = P^*, \ \operatorname{Tr}(P) = N, \ P^2 = P \right\}. \end{split}$$

Let $\mathcal{H} \coloneqq \left(\mathbb{C}_{herm}^{\mathcal{N} \times \mathcal{N}}, \|\cdot\|_{\mathsf{F}}\right)$, endowed with the Frobenius scalar product $\mathsf{Tr}(A^*B)$.

Assumption 1 $E_{nl}: \mathcal{H} \to \mathbb{R}$ is twice continuously differentiable, and thus so is E.

Assumption 2 $P_* \in \mathcal{M}_N$ is a nondegenerate local minimizer in the sense that there exists some $\eta > 0$ such that, for $P \in \mathcal{M}_N$ in a neighborhood of P_* , we have

 $E(P) \ge E(P_*) + \eta \|P - P_*\|_{\mathsf{F}}^2.$

Introduction 000000	Mathematical framework	Crude error bounds 000000	Enhanced error bounds 00000	Numerical examples	Conclusion OO
Structure of	the manifold: the ta	ngent space			

 \mathcal{M}_N is a smooth manifold, we can define its tangent space (it is a \mathbb{R} vector space). Π_P is the orthogonal projection on $\mathcal{T}_P \mathcal{M}_N$:

Introduction 000000	Mathematical framework	Crude error bounds 000000	Enhanced error bounds	Numerical examples	Conclusion OO
First order o	ondition				

 $\min_{P \in \mathcal{M}_N} E(P) = \mathrm{Tr} \left(H_0 P \right) + E_{\mathrm{nl}}(P)$

The first-order optimality condition is $\Pi_{P_*}(H_*) = 0$, which gives

 $P_*H_*(1-P_*)=(1-P_*)H_*P_*=0$,

where $H_* \coloneqq \nabla E(P_*)$.

In particular, $[H_*, P_*] = 0$.

Introduction 000000	Mathematical framework ○○○○●○○	Crude error bounds	Enhanced error bounds	Numerical examples OO	Conclusion OO
Second orde	er condition				

$$\min_{P\in\mathcal{M}_N} E(P) = \mathrm{Tr}\left(H_0 P\right) + E_{\mathrm{nl}}(P)$$

The second order optimality condition reads

$$\forall X \in \mathcal{T}_{\mathcal{P}_*}\mathcal{M}_{\mathcal{N}}, \ \langle X, (\mathbf{\Omega}_* + \mathbf{K}_*)X
angle_{\mathsf{F}} \geqslant \eta \|X\|_{\mathsf{F}}^2$$

 $\bullet \mathbf{K}_* \coloneqq \prod_{P_*} \nabla^2 E(P_*) \prod_{P_*};$

• the operator $\Omega_* : \mathcal{T}_{P_*}\mathcal{M}_N \to \mathcal{T}_{P_*}\mathcal{M}_N$ is defined by,

 $\forall X \in \mathcal{T}_{P_*}\mathcal{M}_N, \quad \mathbf{\Omega}_*X \coloneqq -[P_*, [H_*, X]].$

Introduction 000000	Mathematical framework ○○○○●○○	Crude error bounds 000000	Enhanced error bounds	Numerical examples	Conclusion OO
Second ord	er condition				

$$\min_{P \in \mathcal{M}_N} E(P) = \operatorname{Tr} (H_0 P) + E_{nl}(P)$$

The second order optimality condition reads

$$\forall X \in \mathcal{T}_{\mathcal{P}_*}\mathcal{M}_{\mathcal{N}}, \ \langle X, (\mathbf{\Omega}_* + \mathbf{K}_*)X
angle_{\mathsf{F}} \geqslant \eta \|X\|_{\mathsf{F}}^2 .$$

• $K_* := \prod_{P_*} \nabla^2 E(P_*) \prod_{P_*};$ • the operator $\Omega_* : \mathcal{T}_{P_*} \mathcal{M}_N \to \mathcal{T}_{P_*} \mathcal{M}_N$ is defined by,

 $\forall X \in \mathcal{T}_{P_*}\mathcal{M}_N, \quad \mathbf{\Omega}_*X \coloneqq -[P_*, [H_*, X]].$

 $\rightsquigarrow \Omega_* + K_*$ can be interpreted as the Hessian of the energy on the manifold, Ω_* represents the influence of the curvature.

Introduction 000000	Mathematical framework	Crude error bounds 000000	Enhanced error bounds 00000	Numerical examples	Conclusion OO
Plane-wave	e DFT				

Throughout the talk, we perform numerical tests in DFTK¹, a PW DFT tool-kit for Julia. In short:

- we consider a periodic system with lattice \mathcal{R} , ω is the unit cell and \mathcal{R}^* the reciprocal lattice;
- we solve a variational approximation of the KS-DFT equations in the finite dimensional space

$$\mathcal{X}_{E_{\mathsf{cut}}}\coloneqq \left\{ e_{\pmb{G}}, \; \pmb{G}\in\mathcal{R}^{*} \; \Big| \; rac{1}{2} \left| \pmb{G}
ight|^{2} \leqslant E_{\mathsf{cut}}
ight\},$$

where, for $\boldsymbol{G} \in \mathcal{R}^{*}$,

$$orall \mathbf{r} \in \mathbb{R}^3, \quad e_{\mathbf{G}}(\mathbf{r}) \coloneqq rac{1}{\sqrt{|\omega|}} \exp\left(\mathrm{i} \mathbf{G} \cdot \mathbf{r}
ight).$$

¹https://dftk.org, developed by M. F. Herbst and A. Levitt.

Introduction	Mathematical framework	Crude error bounds	Enhanced error bounds	Numerical examples	Conclusion
000000	○○○○○○●	000000	00000	OO	OO
Numerical se	tting				

- FCC phase of the silicon crystal, within LDA approximation and 2 × 2 × 2 Brillouin zone discretization;
- we compute a reference solution for $E_{\text{cut,ref}} = 125 \text{ Ha} \Rightarrow E_{\text{cut,ref}}$ defines \mathcal{N} the size of the reference space and we obtain the reference orbitals Φ_* , the energy E_* , density ρ_* , the forces F_* on each atoms, etc...
- for smaller E_{cut}'s, we compute the associated variational approximation and we measure the error on different quantities:

$$|E - E_*|, \quad \|\rho - \rho_*\|_{L^2}, \quad |F - F_*|$$

Introduction	Mathematical framework	Crude error bounds	Enhanced error bounds	Numerical examples	Conc
000000		●○○○○○	00000	OO	00

1 Introduction

2 Mathematical framework

- Structure of the manifold
- Super-operators
- Numerical setting

3 Crude error bounds using linearization

- Linearization in the asymptotic regime
- Error bounds based on operator norms
- Error bounds for the forces

4 Enhanced error bounds based on frequencies splitting

5 Numerical examples

Introduction 000000	Mathematical framework	Crude error bounds ○●○○○○	Enhanced error bounds	Numerical examples OO	Conclusion OO
Linearizatior	n: main idea				

Assume you want to solve R(x) = 0 with R a differentiable quantity, with Jacobian J_R . Then, around a solution x_* , it holds at first order

 $R(x) = R(x_*) + J_R(x_*)(x - x_*),$

from which we deduce

$$(x-x_*)\approx J_R(x_*)^{-1}R(x)$$

Newton's algorithm :

$$x^{k+1} = x^k - J_R(x^k)^{-1}R(x^k)$$

Introduction 000000	Mathematical framework	Crude error bounds ○○●○○○	Enhanced error bounds	Numerical examples	Conclusion OO
Linearization	: application to ou	ur model			

$$oldsymbol{\Omega}_* + oldsymbol{\mathcal{K}}_*$$
 is the Jacobian² of $P \mapsto \Pi_P H(P) = R(P)$ at P_*

$$|\Pi_P(P-P_*)=(oldsymbol{\Omega}_*+oldsymbol{\mathcal{K}}_*)^{-1}R(P)|$$

²Eric Cancès, Gaspard Kemlin, Antoine Levitt. Convergence analysis of direct minimization and self-consistent iterations. SIAM Journal of Matrix Analysis and Applications, 42(1):243–274 (2021).

Introduction	Mathematical framework	Crude error bounds	Enhanced error bounds	Numerical examples	Conclusion
000000		○○●○○○	00000	OO	OO
Linearization:	application to our	model			

$$\mathbf{\Omega}_* + \mathbf{K}_*$$
 is the Jacobian² of $P \mapsto \prod_P H(P) = R(P)$ at P_* .

$$|\Pi_P(P-P_*)=(oldsymbol{\Omega}_*+oldsymbol{\mathcal{K}}_*)^{-1}R(P)|$$

Newton's algorithm : extend the definition of Ω and K outside of P_* and let \mathfrak{R} be a retraction to the manifold

$$P^{k+1} = \mathfrak{R}_{P^k} \left(P^k - \left(\mathbf{\Omega}(P^k) + \mathbf{K}(P^k) \right)^{-1} \mathbf{R}(P^k) \right)$$

Gaspard Kemlin CERMICS & Inria

²Eric Cancès, Gaspard Kemlin, Antoine Levitt. Convergence analysis of direct minimization and self-consistent iterations. SIAM Journal of Matrix Analysis and Applications, 42(1):243–274 (2021).

Introduction	Mathematical framework	Crude error bounds	Enhanced error bounds	Numerical examples	Conclusion
000000		○OO●○○	00000	OO	OO

Compare DFTK QoI for given $E_{\rm cut} < E_{\rm cut,ref}$ and the QoI after one Newton step in the reference grid.

Introduction	Mathematical framework	Crude error bounds	Enhanced error bounds	Numerical examples	Conclusion
000000		○○○●○○	00000	OO	00

Compare DFTK QoI for given $E_{\text{cut}} < E_{\text{cut,ref}}$ and the QoI after one Newton step in the reference grid.

 \rightsquigarrow the asymptotic regime is quickly established: $\Pi_P(P - P_*) = (\Omega_* + \kappa_*)^{-1} R(P)$

Introduction	Mathematical framework	Crude error bounds	Enhanced error bounds	Numerical examples	Conclusion
000000		○○○○●○	00000	OO	00

Error bounds based on operator norms

 $\Pi_P(P-P_*) = (\boldsymbol{\Omega}_* + \boldsymbol{K}_*)^{-1} R(P)$

First crude bound : $||P - P_*||_F$ and $||R(P)||_F$ cannot be directly compared (not the same unit) but we have

$$\begin{split} \left\| P - P_* \right\|_{\mathsf{F}} &\approx \left\| \mathsf{\Pi}_P (P - P_*) \right\|_{\mathsf{F}} \\ &\leqslant \left\| \left(\boldsymbol{\Omega}_* + \boldsymbol{K}_* \right)^{-1} \right\|_{\mathsf{op}} \left\| R(P) \right\|_{\mathsf{F}}. \end{split}$$

Intr	odu		
00	00	00	

Mathematical framework

Crude error bounds

Enhanced error bounds

Numerical example 00 Conclusior 00

Error bounds based on operator norms

 $\Pi_P(P-P_*) = (\boldsymbol{\Omega}_* + \boldsymbol{K}_*)^{-1} R(P)$

First crude bound : $||P - P_*||_F$ and $||R(P)||_F$ cannot be directly compared (not the same unit) but we have

$$\begin{split} \left\| P - P_* \right\|_{\mathsf{F}} &\approx \left\| \mathsf{\Pi}_{P}(P - P_*) \right\|_{\mathsf{F}} \\ &\leqslant \left\| \left(\mathbf{\Omega}_* + \mathbf{\mathcal{K}}_* \right)^{-1} \right\|_{\mathsf{op}} \left\| R(P) \right\|_{\mathsf{F}}. \end{split}$$

 \leadsto the bounds are several orders of magnitude above the error. . .

Introduction 000000	Mathematical framework	Crude error bounds ○○○○●○	Enhanced error bounds 00000	Numerical examples	Conclusion OO
Error bound	s based on operato	or norms			

 $\Pi_P(P-P_*) = (\boldsymbol{\Omega}_* + \boldsymbol{K}_*)^{-1} R(P)$

One can change the metric with $oldsymbol{M} pprox 1 - rac{1}{2} \Delta$

$$\begin{split} & \left\| \boldsymbol{M}^{1/2} \Pi_{\boldsymbol{P}}(\boldsymbol{P} - \boldsymbol{P}_{*}) \right\|_{\mathsf{F}} \\ & \leq \left\| \boldsymbol{M}^{1/2} (\boldsymbol{\Omega}_{*} + \boldsymbol{K}_{*})^{-1} \boldsymbol{M}^{1/2} \right\|_{\mathsf{op}} \left\| \boldsymbol{M}^{-1/2} \boldsymbol{R}(\boldsymbol{P}) \right\|_{\mathsf{F}}. \end{split}$$

	tro	du			
0	oc	0	0	0	

Aathematical framework

Crude error bounds

Enhanced error bounds

Numerical exampl 00 Conclusior 00

Error bounds based on operator norms

 $\Pi_P(P-P_*) = (\boldsymbol{\Omega}_* + \boldsymbol{K}_*)^{-1} R(P)$

One can change the metric with $oldsymbol{M} pprox 1 - rac{1}{2} \Delta$

 $\left\|\boldsymbol{M}^{1/2}\Pi_{P}(P-P_{*})\right\|_{F}$ $\leqslant \left\|\boldsymbol{M}^{1/2}(\boldsymbol{\Omega}_{*}+\boldsymbol{K}_{*})^{-1}\boldsymbol{M}^{1/2}\right\|_{op}\left\|\boldsymbol{M}^{-1/2}R(P)\right\|_{F}.$

 $\stackrel{\text{$\sim > $}}{ \ \ } \text{ the bounds are several orders of magnitude above the error. .. but have the same rate } \\ \stackrel{\text{$\sim > $}}{ \ \ } \text{ asymptotically } \left\| \boldsymbol{M}^{-1/2} R(P) \right\|_{\text{$\sf F$}} \sim \left\| \boldsymbol{M}^{1/2} \Pi_{P}(P-P_{*}) \right\|_{\text{$\sf F$}}^{10^{-3}}, \\ \text{though not upper bound nor guaranteed. The same holds for } \left\| \boldsymbol{M}^{-1} R(P) \right\|_{\text{$\sf F$}} \sim \| P - P_{*} \|_{\text{$\sf F$}}.$

Introduction 000000	Mathematical framework	Crude error bounds ○○○○○●	Enhanced error bounds	Numerical examples OO	Conclusion OO
Frror bounds	s for the forces				

Forces are decomposed into two components (local and non-local)³.

Local forces: Let $F_{j,\alpha}^{\text{loc}}(P)$ be the local forces on atom *j* in direction α . It holds (at first order):

 $F_{j,\alpha}^{\mathsf{loc}}(P) - F_{j,\alpha}^{\mathsf{loc}}(P_*) = \mathsf{d}F_{j,\alpha}^{\mathsf{loc}}(P) \cdot \Pi_P(P - P_*);$

 $\left| F_{j,\alpha}^{\mathsf{loc}}(P) - F_{j,\alpha}^{\mathsf{loc}}(P_*) \right| \leqslant \left\| \mathsf{d} F_{j,\alpha}^{\mathsf{loc}}(P) \right\|_{\mathcal{T}_{P}\mathcal{M}_{N} \to \mathbb{R}} \| P - P_* \|_{\mathsf{F}} \,.$

³This comes from the pseudopotentials approximations and Hellmann-Faynman theorem.

000000	Mathematical framework	Crude error bounds	Enhanced error bounds	Numerical examples	Conclusion OO

Error bounds for the forces

Forces are decomposed into two components (local and non-local) 3 .

Local forces: Let $F_{j,\alpha}^{\text{loc}}(P)$ be the local forces on atom *j* in direction α . It holds (at first order):

$$F_{j,lpha}^{\mathsf{loc}}(P) - F_{j,lpha}^{\mathsf{loc}}(P_*) = \mathsf{d}F_{j,lpha}^{\mathsf{loc}}(P) \cdot \Pi_P(P-P_*);$$

$$\left| \mathsf{F}^{\mathsf{loc}}_{j,lpha}(P) - \mathsf{F}^{\mathsf{loc}}_{j,lpha}(P_*)
ight| \leqslant \left\| \mathsf{d} \mathsf{F}^{\mathsf{loc}}_{j,lpha}(P)
ight\|_{\mathcal{T}_P\mathcal{M}_N o \mathbb{R}} \left\| P - P_*
ight\|_{\mathsf{F}}$$

 \rightsquigarrow several orders of magnitude above !

 $^{^{3}\}mbox{This}$ comes from the pseudopotentials approximations and Hellmann-Faynman theorem.

Introduction 000000	Mathematical framework	Crude error bounds ○○○○●	Enhanced error bounds	Numerical examples OO	Conclusion OO
Error bound	ls for the forces				

Forces are decomposed into two components (local and non-local)³.

Total forces : Combining local and nonlocal forces on all atoms, we have $F(P) \in \mathbb{R}^{3N_{\#atoms}}$ and

 $F(P) - F(P_*) = \mathsf{d}F(P) \cdot \Pi_P(P - P_*).$

 \rightsquigarrow What happens if we directly replace Π_P(P − P_{*}) by $M^{-1}R(P)$ in dF(P) · Π_P(P − P_{*})?

³This comes from the pseudopotentials approximations and Hellmann-Faynman theorem.

Introduction 000000	Mathematical framework	Crude error bounds ○○○○○●	Enhanced error bounds	Numerical examples	Conclusion OO
Error boun	ds for the forces				

Forces are decomposed into two components (local and non-local)³.

Total forces : Combining local and nonlocal forces on all atoms, we have $F(P) \in \mathbb{R}^{3N_{\#atoms}}$ and

 $F(P) - F(P_*) = \mathsf{d}F(P) \cdot \Pi_P(P - P_*).$

 \rightsquigarrow What happens if we directly replace $\Pi_P(P - P_*)$ by $M^{-1}R(P)$ in $dF(P) \cdot \prod_{P}(P - P_*)$?

 \sim linearization quickly valid: \rightarrow even if $\prod_{P}(P - P_*)$ and $M^{-1}R(P)$ are asymptotically equivalent, orange and blue do not match.

Gaspard Kemlin CERMICS & Inria

Practical error bounds in electronic structure

³This comes from the pseudopotentials approximations and Hellmann-Faynman theorem.

Introduction	Mathematical framework	Crude error bounds	Enhanced error bounds	Numerical examples	Conclusion
000000		000000	●0000	OO	00

1 Introduction

2 Mathematical framework

- Structure of the manifold
- Super-operators
- Numerical setting

3 Crude error bounds using linearization

- Linearization in the asymptotic regime
- Error bounds based on operator norms
- Error bounds for the forces

4 Enhanced error bounds based on frequencies splitting

5 Numerical examples

Introduction 000000	Mathematical framework	Crude error bounds	Enhanced error bounds O●OOO	Numerical examples OO	Conclusion OO
Frequency s	plitting				

Let $P \in \mathcal{M}_N$, then $\mathcal{T}_P \mathcal{M}_N$ can be split into low and high frequencies. More precisely, given $E_{cut} < E_{cut,ref}$, we have

with $\psi_1 \in \mathcal{X}_{\mathsf{E}_{\mathsf{cut}}}$, $\psi_2 \in \mathcal{X}_{\mathsf{E}_{\mathsf{cut}}}^{\perp}$ and $\mathcal{X}_{\mathsf{E}_{\mathsf{cut},\mathsf{ref}}} = \mathcal{X}_{\mathsf{E}_{\mathsf{cut}}} \oplus \mathcal{X}_{\mathsf{E}_{\mathsf{cut}}}^{\perp}$.

Introduction 000000	Mathematical framework	Crude error bounds	Enhanced error bounds O●OOO	Numerical examples OO	Conclusion OO
Frequency	<pre>v splitting</pre>				

Let $P \in \mathcal{M}_N$, then $\mathcal{T}_P \mathcal{M}_N$ can be split into low and high frequencies. More precisely, given $E_{cut} < E_{cut,ref}$, we have

with $\psi_1 \in \mathcal{X}_{\mathsf{E}_{\mathsf{cut}}}$, $\psi_2 \in \mathcal{X}_{\mathsf{E}_{\mathsf{cut}}}^{\perp}$ and $\mathcal{X}_{\mathsf{E}_{\mathsf{cut},ref}} = \mathcal{X}_{\mathsf{E}_{\mathsf{cut}}} \oplus \mathcal{X}_{\mathsf{E}_{\mathsf{cut}}}^{\perp}$.

If *P* is a solution of the variational problem for a given E_{cut} , then R(P), $M^{-1}R(P) \in \prod_{E_{cut}}^{\perp} \mathcal{T}_P \mathcal{M}_N$ (not exactly true in practice because of numerical quadrature errors due to exchange-correlation terms.).

 $\frac{\text{odd} \text{uction}}{\text{ocococ}} \qquad \frac{\text{Mathematical framework}}{\text{ocococ}} \qquad \frac{\text{Crude error bounds}}{\text{ocococ}} \qquad \frac{\text{Enhanced error bounds}}{\text{ocococ}} \qquad \frac{\text{Enhanced error bounds}}{\text{ocococ}} \qquad \frac{\text{Numerical examples}}{\text{ocococ}} \qquad \frac{\text{Crude error bounds}}{\text{ocococ}} \qquad \frac{\text{Crude error bounds}}{\text{ocococ}} \qquad \frac{\text{Enhanced error bounds}}{\text{ocococ}} \qquad \frac{\text{Crude error bounds}}{\text{ocococ}} \qquad \frac{\text{Crude error bounds}}{\text{ocococ}} \qquad \frac{\text{Enhanced error bounds}}{\text{ocococ}} \qquad \frac{\text{Crude error bounds}}{\text{ococ}} \qquad \frac{\text{Crude error$

 $\begin{array}{c|c} tion \\ occentric constraints \\ cons$

• $M^{-1}R(P)$ is high frequencies;

• $\Pi_P(P - P_*)$ is mainly high frequencies but with low frequencies components;

$$\Pi_{P} \frac{\partial V_{\text{loc}}}{\partial R_{j,\alpha}}$$
 is mainly low frequencies

→ orange and blue do not match because the error and the residual don't have the same support in frequencies, even if $\|\boldsymbol{M}^{-1}R(P)\|_{\rm F} \sim \|\Pi_P(P-P_*)\|_{\rm F}$ asymptotically.

Introduction 000000	Mathematical framework	Crude error bounds 000000	Enhanced error bounds 000€0	Numerical examples	Conclusion OO
F 1					

Enhanced error bounds

We decompose the error/residual relation onto $\Pi_{E_{cut}} \mathcal{T}_P \mathcal{M}_N \oplus \Pi_{E_{cut}} \mathcal{T}_P \mathcal{M}_N^{\perp}$ to get

$$\begin{bmatrix} (\boldsymbol{\Omega} + \boldsymbol{K})_{11} & (\boldsymbol{\Omega} + \boldsymbol{K})_{12} \\ (\boldsymbol{\Omega} + \boldsymbol{K})_{21} & (\boldsymbol{\Omega} + \boldsymbol{K})_{22} \end{bmatrix} \begin{bmatrix} P_1 - P_{*1} \\ P_2 - P_{*2} \end{bmatrix} = \begin{bmatrix} R_1 \\ R_2 \end{bmatrix}.$$

Introduction	Mathematical framework	Crude error bounds	Enhanced error bounds	Numerical examples	Conclusion
000000	0000000	000000		OO	OO

Enhanced error bounds

We decompose the error/residual relation onto $\Pi_{E_{cut}}\mathcal{T}_{P}\mathcal{M}_{N}\oplus \Pi_{E_{cut}}\mathcal{T}_{P}\mathcal{M}_{N}^{\perp}$ to get

$$\begin{bmatrix} (\boldsymbol{\Omega} + \boldsymbol{K})_{11} & (\boldsymbol{\Omega} + \boldsymbol{K})_{12} \\ (\boldsymbol{\Omega} + \boldsymbol{K})_{21} & (\boldsymbol{\Omega} + \boldsymbol{K})_{22} \end{bmatrix} \begin{bmatrix} P_1 - P_{*1} \\ P_2 - P_{*2} \end{bmatrix} = \begin{bmatrix} R_1 \\ R_2 \end{bmatrix}.$$

As the kinetic energy is dominating for high-frequencies, we approximate

$$(\boldsymbol{\Omega} + \boldsymbol{\mathcal{K}})_{21} \approx 0 \quad \text{and} \quad (\boldsymbol{\Omega} + \boldsymbol{\mathcal{K}})_{22} \approx \boldsymbol{\mathcal{M}}_{22} \approx \left. \left(-\frac{1}{2} \Delta + 1 \right) \right|_{\mathcal{X}_{\boldsymbol{\mathcal{E}}_{\mathrm{cut}}^{\perp}}} \quad \text{on the tangent space} \ ,$$

and thus

$$\begin{bmatrix} (\boldsymbol{\Omega} + \boldsymbol{K})_{11} & (\boldsymbol{\Omega} + \boldsymbol{K})_{12} \\ 0 & \boldsymbol{M}_{22} \end{bmatrix} \begin{bmatrix} P_1 - P_{*1} \\ P_2 - P_{*2} \end{bmatrix} = \begin{bmatrix} R_1 \\ R_2 \end{bmatrix}.$$

000000	000000	000000	00000	00	
000000	0000000	000000		00	00

Enhanced error bounds

We decompose the error/residual relation onto $\Pi_{E_{cut}}\mathcal{T}_{P}\mathcal{M}_{N}\oplus \Pi_{E_{cut}}\mathcal{T}_{P}\mathcal{M}_{N}^{\perp}$ to get

$$\begin{bmatrix} (\boldsymbol{\Omega} + \boldsymbol{K})_{11} & (\boldsymbol{\Omega} + \boldsymbol{K})_{12} \\ (\boldsymbol{\Omega} + \boldsymbol{K})_{21} & (\boldsymbol{\Omega} + \boldsymbol{K})_{22} \end{bmatrix} \begin{bmatrix} P_1 - P_{*1} \\ P_2 - P_{*2} \end{bmatrix} = \begin{bmatrix} R_1 \\ R_2 \end{bmatrix}.$$

As the kinetic energy is dominating for high-frequencies, we approximate

$$(\mathbf{\Omega} + \mathbf{K})_{21} pprox 0$$
 and $(\mathbf{\Omega} + \mathbf{K})_{22} pprox \mathbf{M}_{22} pprox \left(-rac{1}{2} \Delta + 1
ight) \Big|_{\mathcal{X}_{E_{\mathrm{cut}}^{\perp}}}$ on the tangent space ,

and thus

$$\begin{bmatrix} (\boldsymbol{\Omega} + \boldsymbol{K})_{11} & (\boldsymbol{\Omega} + \boldsymbol{K})_{12} \\ 0 & \boldsymbol{M}_{22} \end{bmatrix} \begin{bmatrix} P_1 - P_{*1} \\ P_2 - P_{*2} \end{bmatrix} = \begin{bmatrix} R_1 \\ R_2 \end{bmatrix}.$$

This yields a new residual, which requires only an inversion on the coarse grid $\mathcal{X}_{E_{cut}}$ (M_{22} being easy to invert):

$$R_{\rm Schur}(P) = \begin{bmatrix} (\mathbf{\Omega} + \mathbf{K})_{11}^{-1} (R_1 - (\mathbf{\Omega} + \mathbf{K})_{12} \mathbf{M}_{22}^{-1} R_2) \\ \mathbf{M}_{22}^{-1} R_2 \end{bmatrix}$$

Mathematical	
0000000	

Crude error bounds 000000

$$F_{err} - F_* := F(P) - dF(P) \cdot (\Pi_P(P - P_*)) - F(P_*),$$

$$F_{\mathsf{res}} - F_* \coloneqq F(P) - \mathsf{d}F(P) \cdot (\boldsymbol{M}^{-1}R(P)) - F(P_*),$$

$$F_{Schur} - F_* := F(P) - dF(P) \cdot (R_{Schur}(P)) - F(P_*),$$

Introduction
000000

$$F_{err} - F_* \coloneqq F(P) - \mathsf{d}F(P) \cdot (\Pi_P(P - P_*)) - F(P_*),$$

$$F_{\rm res} - F_* := F(P) - dF(P) \cdot (\boldsymbol{M}^{-1}R(P)) - F(P_*),$$

$$F_{\mathsf{Schur}} - F_* := F(P) - \mathsf{d}F(P) \cdot (R_{\mathsf{Schur}}(P)) - F(P_*),$$

 \leadsto we win about one order of magnitude in the approximation of the error of the forces $F-F_{\ast}.$

duction	Mathematical framework	Crude error bounds	Enhanced error bounds	Numerical examples	Conclusion
000		000000	00000	●O	00

Numerical examples

Gaspard Kemlin CERMICS & Inria

Introduction	Mathematical framework	Crude error bounds	Enhanced error bounds	Numerical examples	Conclusion
000000	0000000	000000	00000	OO	●O

The asymptotic regime is quickly established;

- The asymptotic regime is quickly established;
- error estimates based on operator norms are not good;
- in the PW setting, this come from the high frequencies nature of the residual;
- using a Schur complement to couple high and low frequencies clearly enhances the approximation of the error;

- The asymptotic regime is quickly established;
- error estimates based on operator norms are not good;
- in the PW setting, this come from the high frequencies nature of the residual;
- using a Schur complement to couple high and low frequencies clearly enhances the approximation of the error;
- we can either compute error bounds or enhance the precision of the QoI;
- the coupling between high and low frequencies can be pushed further;

- The asymptotic regime is quickly established;
- error estimates based on operator norms are not good;
- in the PW setting, this come from the high frequencies nature of the residual;
- using a Schur complement to couple high and low frequencies clearly enhances the approximation of the error;
- we can either compute error bounds or enhance the precision of the QoI;
- the coupling between high and low frequencies can be pushed further;
- **Limits:** we do not have guaranteed bounds, but useful in practice, valid asymptotically and for a cost comparable to a SCF cycle (inverting $\Omega + K$).

Introduction	Mathematical framework	Crude error bounds	Enhanced error bounds	Numerical examples	Conclusion
000000		000000	00000	OO	O●
Links					

Preprint with more details: https://hal.inria.fr/hal-03408321

Tutorial: https://juliamolsim.github.io/DFTK.jl/dev/examples/error_estimates_forces/

Code: https://github.com/gkemlin/paper-forces-estimator

Resolution

$$\begin{split} \min_{P \in \mathcal{M}_N} E(P) &= \operatorname{Tr} \left(H_0 P \right) + E_{\mathsf{nl}}(P), \\ \mathcal{M}_N &:= \left\{ P \in \mathbb{C}^{\mathcal{N} \times \mathcal{N}} \mid P = P^*, \ \operatorname{Tr}(P) = N, \ P^2 = P \right\}. \end{split}$$

direct minimization

Euler-Lagrange equation

 \downarrow

projected gradient onto the constraint manifold

SCF formulation

$$egin{aligned} & ig(\mathcal{H}_0 +
abla \mathcal{E}_{\mathsf{hl}}(P) ig) arphi_i = arepsilon_i arphi_i, \ & \langle arphi_i | arphi_j
angle = \delta_{ij}, \ & P = \sum_{i=1}^N ert arphi_i
angle \langle arphi_i ert. \end{aligned}$$

Tangent space

In the decomposition $\mathcal{H} = \operatorname{Ran}(P) \oplus \operatorname{Ran}(1-P)$, we have:

$$P = \begin{bmatrix} 1_N & 0 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad \mathcal{T}_P \mathcal{M}_N \coloneqq \left\{ X = \begin{bmatrix} 0 & \times \\ \times^* & 0 \end{bmatrix} \right\}.$$

A density matrix $P \in \mathcal{M}_N$ can be described with N orbitals (any orthonormal basis of Ran(P)):

$$P = \sum_{i=1}^{N} \ket{arphi_i}ra{arphi_i}$$
 with $ra{arphi_i} \ket{arphi_i} = \delta_{ij}.$

Given such a *P*, an element *X* of $\mathcal{T}_P \mathcal{M}_N$ can be described with *N* vectors that are all orthogonal to the φ_i 's:

$$X = \sum_{i=1}^{N} |\varphi_i\rangle \langle \psi_i| + |\psi_i\rangle \langle \varphi_i| \quad \text{with} \quad \langle \varphi_i|\psi_j\rangle = 0 \Rightarrow \|X\|_{\mathsf{F}}^2 = 2\sum_{i=1}^{N} \|\psi_i\|^2$$

Tangent space

In the decomposition $\mathcal{H} = \operatorname{Ran}(P) \oplus \operatorname{Ran}(1-P)$, we have:

$$P = \begin{bmatrix} 1_N & 0 \\ 0 & 0 \end{bmatrix}$$
 and $\mathcal{T}_P \mathcal{M}_N \coloneqq \left\{ X = \begin{bmatrix} 0 & \times \\ \times^* & 0 \end{bmatrix}
ight\}.$

A density matrix $P \in \mathcal{M}_N$ can be described with N orbitals (any orthonormal basis of Ran(P)):

$$P = \sum_{i=1}^{N} \ket{arphi_i}ra{arphi_i}$$
 with $ra{arphi_i} \ket{arphi_i} = \delta_{ij}.$

Given such a *P*, an element *X* of $\mathcal{T}_P \mathcal{M}_N$ can be described with *N* vectors that are all orthogonal to the φ_i 's:

$$X = \sum_{i=1}^{N} |\varphi_i\rangle \langle \psi_i| + |\psi_i\rangle \langle \varphi_i| \quad \text{with} \quad \langle \varphi_i|\psi_j\rangle = 0 \Rightarrow ||X||_{\mathsf{F}}^2 = 2\sum_{i=1}^{N} ||\psi_i||^2$$
$$\boxed{P \in \mathcal{M}_N \quad \leftrightarrow \quad (\varphi_i)_{1 \leqslant i \leqslant N} \in (\mathbb{C}^{\mathcal{N}})^N \text{ spanning Ran}(P)}{X \in \mathcal{T}_P \mathcal{M}_N \quad \leftrightarrow \quad (\psi_i)_{1 \leqslant i \leqslant N} \in (\mathbb{C}^{\mathcal{N}})^N \text{ where } \langle \varphi_i|\psi_j\rangle = 0}$$

Gaspard Kemlin CERMICS & Inria

Change of norm : given $X \in \mathcal{T}_P \mathcal{M}_N$, one might want to compute $\|MX\|_F$ for a metric M on the tangent space. This can be translated in terms of orbitals as

$$\boldsymbol{M}\boldsymbol{X} = \sum_{i=1}^{N} \left| \varphi_{i} \right\rangle \left\langle \boldsymbol{M}_{i} \psi_{i} \right| + \left| \boldsymbol{M}_{i} \psi_{i} \right\rangle \left\langle \varphi_{i} \right|, \quad \left\| \boldsymbol{M} \boldsymbol{X} \right\|_{\mathsf{F}} = 2 \sum_{i=1}^{N} \left\| \boldsymbol{M}_{i} \psi_{i} \right\|$$

where $M_i : \operatorname{Ran}(\{\varphi_j\})^{\perp} \to \operatorname{Ran}(\{\varphi_j\})^{\perp}$ and can eventually depend on the band *i*. In this talk we will use (with Π the projection on $\operatorname{Ran}(\{\varphi_j\})^{\perp}$ and t_i the kinetic energy of band *i*):

$$\begin{array}{cccc} \boldsymbol{M}^{1/2} & \leftrightarrow & \Pi(t_i - \Delta/2)^{1/2} \Pi & \leftrightarrow & \mathsf{H}^{1/2} \text{ norm} \\ \boldsymbol{M} & \leftrightarrow & \Pi(t_i - \Delta/2)^{1/2} \Pi(t_i - \Delta/2)^{1/2} \Pi & \leftrightarrow & \mathsf{H}^1 \text{ norm} \\ \end{array}$$

$$\begin{array}{cccc} M^{-i} & \leftrightarrow & (\Pi(t_i - \Delta/2)^{i+1}) & \leftrightarrow & \Pi^{-i} & \text{norm} \\ M^{-1} & \leftrightarrow & (\Pi(t_i - \Delta/2)^{1/2}\Pi(t_i - \Delta/2)^{1/2}\Pi)^{-1} & \leftrightarrow & \Pi^{-1} & \text{norm} \end{array}$$

Computing $K : K(P) := \prod_P \nabla^2 E(P) \prod_P$ can be defined at any $P = \sum_{i=1}^N |\varphi_i\rangle \langle \varphi_i | \in \mathcal{M}_N$. In terms of orbitals, this translates into

$$orall X \in \mathcal{T}_{\mathcal{P}}\mathcal{M}_{\mathcal{N}}, \quad \mathcal{K}(\mathcal{P})X = \sum_{i=1}^{\mathcal{N}} \ket{\varphi_i} raket{\delta V \varphi_i} + \ket{\delta V \varphi_i} raket{\varphi_i},$$

where X is described by $(\psi_i)_{1\leqslant i\leqslant N}\in (\mathsf{Ran}(\{\varphi_j\})^{\perp})^N$ and

$$(\psi_i)_{1\leqslant i\leqslant N}\mapsto \delta
ho\coloneqq 2\sum_{i=1}^N arphi_i\psi_i\mapsto \delta V\mapsto (\delta Varphi_i)_{1\leqslant i\leqslant N}.$$

Computing Ω : for $P = \sum_{i=1}^{N} |\varphi_i\rangle \langle \varphi_i| \in \mathcal{M}_N$, we define $\Omega(P) : \mathcal{T}_P \mathcal{M}_N \to \mathcal{T}_P \mathcal{M}_N$ by

 $\forall X \in \mathcal{T}_{P}\mathcal{M}_{N}, \quad \mathbf{\Omega}(P)X = -[P, [H(P), X]],$

where $H(P) := \nabla E(P)$. In terms of orbitals it translates into

$$\mathbf{\Omega}(P)X = \sum_{i=1}^{N} \ket{arphi_i} \left\langle (1-P) \left(H(P)\psi_i - \sum_{j=1}^{N} \Lambda_{ij}\psi_j
ight)
ight| + \mathsf{hc},$$

where X is described by $(\psi_i)_{1 \leq i \leq N} \in (\operatorname{Ran}(\{\varphi_j\})^{\perp})^N$ and $\Lambda_{ij} \coloneqq \varphi_j^* H(P) \varphi_i$ (diagonal if $P = P_*$).

Analysis		What is used in practice		
$P\in\mathcal{M}_N$	\leftrightarrow	$\Phi = (arphi_i)_{1\leqslant i\leqslant N}\in (\mathbb{C}^{\mathcal{N}})^{ extsf{N}}$ spanning $Ran(P)$		
$X\in\mathcal{T}_{P}\mathcal{M}_{N}$	\leftrightarrow	$\Psi = (\psi_i)_{1\leqslant i\leqslant N} \in (\mathbb{C}^\mathcal{N})^N ext{ s.t. } \langle arphi_i \psi_j angle = 0$		
$\ X\ _{F}^2$	\leftrightarrow	$2\sum_{i=1}^{N} \ \psi_i\ ^2$		
$\ \boldsymbol{M}^{s}X\ _{F}^{2}$	\leftrightarrow	$2\sum_{i=1}^{N}\ M_{i}^{s}\psi_{i}\ ^{2}$ for $s=-1,-1/2,1/2,1$		
K(P)X	\leftrightarrow	$\overset{i=1}{}$ $K(\Phi)\Psi=(\delta Varphi_i)_{1\leqslant i\leqslant N}$		
$\mathbf{\Omega}(P)X$	\leftrightarrow	$\Omega(\Phi)\Psi = \left((1-P)\left(H(P)\psi_i - \sum_{j=1}^N \Lambda_{ij}\psi_j ight) ight)_{1\leqslant i\leqslant N}$		

Mathematical justification for 1D Gross-Pitaevskii

$$\begin{cases} -\Delta\phi_* + V\phi_* + \phi_*^3 = \lambda_*\phi_*, \\ \|\phi_*\|_{\mathsf{L}^2_{\#}} = 1, \quad \phi_* > 0 \text{ on } \mathbb{R}^d, \end{cases} \quad \begin{cases} -\Delta\phi_N + \Pi_N \left(V\phi_N - \phi_N^3\right) = \lambda_N\phi_N, \\ \|\phi_N\|_{\mathsf{L}^2_{\#}} = 1. \end{cases}$$

• $\Pi_{\phi_N}^{\perp}$ is the orthogonal projector (for the $L_{\#}^2$ inner product) onto ϕ_N^{\perp} ;

• A_N is the self-adjoint operator on ϕ_N^{\perp} defined by $A_N := (\Omega_N + K_N)$ where Ω_N and K_N represent, in the orbital framework, the super-operators $\Omega(P_N)|_{\mathcal{T}_{P_N}\mathcal{M}_{\infty}}$ and $\mathcal{K}(P_N)|_{\mathcal{T}_{P_N}\mathcal{M}_{\infty}}$. We have

(1)
$$\forall \psi_N \in \phi_N^{\perp}, \quad \Omega_N \psi_N = \Pi_{\phi_N}^{\perp} \left(-\Delta + V + \phi_N^2 - \lambda_N \right) \psi_N,$$

(2)
$$\forall \ \psi_N \in \phi_N^{\perp}, \quad \mathcal{K}_N \psi_N = \Pi_{\phi_N}^{\perp} \left(2 \phi_N^2 \psi_N \right);$$

• $M_N^{1/2}$ is the restriction of the operator $\Pi_{\phi_N}^{\perp}(1-\Delta)^{1/2}\Pi_{\phi_N}^{\perp}$ to the invariant subspace ϕ_N^{\perp} .

Proposition

We have

$$\lim_{N\to\infty}\left\|M_N^{1/2}(\Omega_N+K_N)^{-1}M_N^{1/2}-I_{\mathcal{X}_N^{\perp}}\right\|_{\mathcal{X}_N^{\perp}\to L_{\#}^2}=0.$$

Gaspard Kemlin CERMICS & Inria

Guaranteeing bounds

Solve R(x) = 0 with $R: Y \to Z$.

Theorem (Inverse function theorem – Newton - Kantorovich^a)

Assume that

• $DR(x) \in \mathcal{L}(Y, Z)$ is an isomorphism

$$2 \left\| DR(x)^{-1} \right\|_{Z,Y'} L\left(2 \left\| DR(x)^{-1} \right\|_{Z,Y'} \|R(x)_{Z'}\| \right) \le 1$$

with $L(\alpha) = \sup_{y \in \tilde{B}(x,\alpha)} \|DR(x) - DR(y)\|_{Z,Y'}.$

Then, the problem R(x) = 0 has a unique solution x_* in the ball $\overline{B}(x, 2 \| DR(x)^{-1} \|_{Z,Y'} \| R(x)_{Z'} \|)$. Moreover,

$$||x - x_*||_Y \le 2 ||DR(x)^{-1}||_{Z,Y'} ||R(x)_{Z'}||.$$

^aGabriel Caloz, Jacques Rappaz. Numerical analysis for nonlinear and bifurcation problems. Handbook Numerical Analysis, 5:487-637 (1997).