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Introduction

I Quantum chemical methods rely on approximations

I Combined effect of these is difficult to assess

⇒ Every quantum chemical result is affected by some unknown
error



Traditional Benchmarking?

I Knowledge of these errors is crucial for practical applications

I Traditional way of assessing the reliability of a quantum
chemical method: (static) benchmarking

I This approach suffers from some shortcomings, which we will
illustrate in this talk1

1T. Weymuth, M. Reiher, arXiv:2204.06659 [physics.comp-ph], 2022
(Phys. Chem. Chem. Phys., in press).



Current Situation

I Errors of quantum chemical calculations behave
heteroscedastically

⇒ Small benchmark sets are not representative for most
applications

I This was addressed by the creation of ever larger benchmark
sets

I Example: set by Mardirossian and Head-Gordon2 (4986 data
points)

I All our conclusions are valid for any benchmark set

2N. Mardirossian, M. Head-Gordon, Mol. Phys., 2017, 115, 2315.



Study Setup

I Key idea: subject benchmark set to statistical analysis to
understand how conclusions w. r. t. accuracy and
transferability depend on composition of set3

I Jackknifing: how strong is the effect of a single data point?

3T. Weymuth, M. Reiher, arXiv:2204.06659 [physics.comp-ph], 2022
(Phys. Chem. Chem. Phys., in press).



Jackknifing Individual Data Points

I Some points, when left away, lead to a markedly lower
RMSD — these points have an unexpectedly large effect

I Leaving out the ten data points with largest error lowers the
RMSD by 17 % (for PBE). What if these points were
accidentally omitted?



Jackknifing Individual Data Points

A few additional data points can reduce or increase the cur-
rently assessed accuracy of a density functional up to 20 %
even when a very large benchmark set is employed



Error Distribution

I Few points have very large errors — these have a large effect
on the RMSD

I Large errors are almost always reported for atomization
energies, i.e., extensive quantities growing with system size



Error Distribution

Since errors are distributed very unevenly, even large bench-
mark sets cannot reliably estimate the error for a particular
system; one needs to adopt a system-focused approach to
uncertainty quantification



System-Focused Bayesian Uncertainty Quantification

I System-specific parametrization of density functionals
including uncertainty estimation4

I Estimating prediction uncertainty of physico-chemical property
models via bootstrapping5

I Quantifying the uncertainty of semiclassical D3 dispersion
corrections6

I Error-controlled explorations of chemical reaction networks
with Gaussian processes7

4G. N. Simm, M. Reiher, J. Chem. Theory Comput., 2016, 12, 2762.
5J. Proppe, M. Reiher, J. Chem. Theory Comput., 2017, 13, 3297.
6T. Weymuth, J. Proppe, M. Reiher, J. Chem. Theory Comput., 2018, 14,

2480.
7G. N. Simm, M. Reiher, J. Chem. Theory Comput., 2018, 14, 5238.



System-Focused Bayesian Uncertainty Quantification

I Kinetic modeling with propagation of free-energy
uncertainties8

I Correct systematic errors in D3 dispersion corrections with
Gaussian processes9

I Review on error assessment in computation chemistry10

8J. Proppe, M. Reiher, J. Chem. Theory Comput., 2019, 15, 357.
9J. Proppe, S. Gugler, M. Reiher, J. Chem. Theory Comput., 2019, 15,

6046.
10G. N. Simm, J. Proppe, M. Reiher, Chimia, 2017, 71, 202.



Conclusions and Outlook

I Fundamental challenge of static benchmarking: errors behave
heteroscedastically

I For a benchmarking set representing large part of chemical
space, aggregating all the errors into one overall error measure
would make this error measure too large for some parts of
chemical space, and too low for others.

I Simple but effective way to overcome this challenge: dynamic,
i.e., rolling and system-focused benchmarking
I Create benchmark data for each particular application

I Use fast ML model to predict error; retrain this model whenever
necessary11

11M. Reiher, Isr. J. Chem., 2022, 62, e202100101.
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