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Motivation

• Given an interatomic potential, is there a systematic way to form
a meaningful prior for the parameters based on physical
constraints?

• Plenty of recent literature on
continuum stochastic elasticity,
including information-theoretic
framework for deriving least-
biased prior distributions for
model parameters∗.

• Given an atomistic model, one can link it to a continuum one via
the Cauchy–Born rule†.

∗J. Guilleminot and C. Soize. On the statistical dependence for the components of random elasticity
tensors exhibiting material symmetry properties. Journal of Elasticity, 111(2):109–130, 2013.
†J.L. Ericksen. On the Cauchy–Born Rule. Mathematics & Mechanics of Solids, 13 (3–4): 199–220,

2008.
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Setup

• The position of M atoms R = {rj}Mj=1.
• The total energy is expressed as a sum of body terms

E (R) =
N∑

k=1

1
k!

∑
i1 6=... 6=ik

Ek(r i1 , . . . , r ik ),

truncated at some N ∈ N.
• The 1-body term, E1, typically related to external forces, is

disregarded.
• Two toy model cases:

1. N = 2, E2 is the Lennard-Jones potential;
2. N = 3 and E2,E3 are basic prototype ML potentials following the

aPIP framework∗.

∗C. van der Oord, G. Dusson, G. Csanyi, and C. Ortner. Regularised atomic body-ordered
permutation-invariant polynomials for the construction of interatomic potentials. Mach. Learn.: Sci.
Technol., 1, 2020. 2



Setup

• Given R = {rj}Mj=1 and using rji = rj − ri , useful to rewrite as

E (R) =
N∑

k=1

1
k!

∑
i1 6=... 6=ik

Ek(r i1 , . . . , r ik )

=
M∑
j=1

V (Rj ), Rj = {rji}i∈N(j),

where V : Rd×(M−1) → R is the site potential and there is a
invariances-induced correspodence, e.g.

E2(r1, r2) ≡ V2(|r12|),
E3(r1, r2, r3) ≡ V3(|r12|, |r13|, |r23|).
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Deformations and displacements

D
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b
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r

Contribution to the energy, φ(r)

• We decompose R = R0 + R1, where R0 is a
fixed reference configuration, a Bravais lattice
AZd , and R1 a displacement from it.

• The deformation and the displacement:

yu : AZd → Rd , yu( m︸︷︷︸
≡j

) = m︸︷︷︸
≡r0j

+ u(m)︸ ︷︷ ︸
≡r1j

.

• Finite differences and discrete gradients:

Dρy
u(m) := yu(m + ρ)− yu(m)︸ ︷︷ ︸

≡rji

, Dyu(m) := {Dρyu(m)}ρ ∈ R︸ ︷︷ ︸
≡i∈N(j)

.

• The energy:
E(u) :=

∑
m

V (Dyu(m)) ≡ E (R).
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Lattice constant and the Cauchy–Born rule

• Formal Taylor expansion around u = 0 (≡ R0):

E(u) = E(0) + 〈δE(0), u〉+ 〈δ2E(0)u, u〉+ h.o.t,

〈δE(0), u〉 =
∑
m

∇V ({ρ}) : Du(m) =
∑
m

∑
i ,σ

∂iσV ({ρ})Dσui (m),

〈δ2E(0)u, u〉 =
∑
m

∇2V ({ρ})Du(m) : Du(m)

=
∑
m

∑
i ,σ,j ,λ

∂2iσjλV ({ρ})Dσui (m)Dλuj(m).

• Typical assumption: perfect lattice is a stable equilibrium, that is,

δE(0) = 0, 〈δ2E(0)u, u〉 ≥ C‖Du‖2`2 .
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Lattice constant and the Cauchy–Born rule

• Restrict to uniform displacements u(m) = Fm. Then
Dσu(m) = ∇u(m)σ = Fσ and

〈δE(0), u〉 =
∑
m

∑
iα

Liα∂αui ,

〈δ2E(0)u, u〉 =
∑
m

∑
iαjβ

S jβ
iα∂αui∂βuj .

• Perfect lattice an equlibrium:

〈δE(0), u〉 = 0 =⇒ Liα = 0 (determines lattice constant `).

• Cauchy–Born rule and elasticity tensor:

W (F ) :=
1

det(`A)
V ({Fσ}),

Cjβ
iα := ∂FiαFjβ

W (Id) =
1

det(`A)
S jβ
iα .
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Continuum linearised elasticity

• The strain tensor, ε(x) =
[
∇u(x) +∇u(x)>

]
/2, and the

constitutive stress-strain relation is

σ(x) = C : ε(x).

• Equilibria: σij ,j = 0 for i = 1, 2, 3.

• Up to to 21 independent entries in C with a symmetric matrix
representation [C] ∈ R6×6 admitting a decomposition∗

[C] =
n∑

i=1

ciMi .

• The parameters are c = (c1, . . . , cn) ∈ Rn.

∗J. Guilleminot and C. Soize. On the statistical dependence for the components of random elasticity
tensors exhibiting material symmetry properties. Journal of Elasticity, 111(2):109–130, 2013.
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Continuum stochastic linearised elasticity

• Invoke the maximum entropy principle (MaxEnt) on a minimal
set of constraints∗:
1. The mean value of the tensor is known.
2. The elasticity tensor C and its inverse both have finite

second-order moments (physical consistency).

• Write them as expectations
E{f (c)} = h,

where f : Rn → Rq and h ∈ Rq.
• Then the least informative prior on c has probability density

ρ(c) := 1S(c) exp{−〈λ, f (c)〉Rq},

where S ⊂ Rn represents all admissable choices for c ∈ Rn and
λ = (λ1, . . . , λq) are Lagrange multipliers.

• Key point: study the separability of φ(c) = log(det[C]).
∗J. Guilleminot and C. Soize. On the statistical dependence for the components of random elasticity
tensors exhibiting material symmetry properties. Journal of Elasticity, 111(2):109–130, 2013. 8



Back to the atomistic model

• Recall that

Cjβ
iα = ∂FiαFjβ

W (Id) =
1

det(`A)
S jβ
iα ,

S jβ
iα =

∑
σ,λ

∂2iσjλV ({ρ})σαλβ.

.
• Invoke the maximum entropy principle (MaxEnt) on a minimal

set of constraints:
1. The mean value of the interatomic potential parameters are

known.
2. The Cauchy–Born elasticity tensor C and its inverse both have

finite second-order moments (physical consistency).

• Key point: study the separability of log(det[C]), which is now a
function of the parameters of the potential.
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Lennard–Jones potential example

• The site potential is

V (Dyu(m)) =
∑
ρ

V2(|Dρyu(m)|),

V2(r) = 4a1

[(
1
a2r

)12

−
(

1
a2r

)6
]
.

• Hence two parameters a = (a1, a2).

• For pair potentials

Liα =
∑
ρ

V ′2(|ρ|)
|ρ|

ρiρα, hence here Liα = 0 =⇒ ` =

(
B

A

)1/6

a2
−1,

Cjβ
iα =

1
det(`A)

∑
ρ

[(
V ′′2 (|ρ|)
|ρ|2

− V ′2(|ρ|)
|ρ|3

)
ρiρj + δij

V ′2(|ρ|)
|ρ|

]
ραρβ.
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Lennard–Jones potential example

Proposition∗

In an in-plane model on a triangular lattice the MaxEnt probability
density function of the random variable a = (a1, a2) is given by

ρa(a) = ρa1(a1)× ρa2(a2),
ρa1(a1) = 1R+(a1)k1a

−τ
1 exp{−λ1a1},

ρa2(a2) = 1R+(a2)k2a
−2τ
2 exp{−λ2a2},

with k1 and k2 positive normalization constants, and λ1 and λ2
Lagrange multipliers. The parameter τ controls the level of
statistical fluctuations and is required to satisfy τ ∈ (−∞, 1/2).

In other words: a1, a2 statistically independent and Gamma
distributed.
∗M. B., T.E. Woolley, and L.A.Mihai. A stochastic framework for atomistic fracture. SIAM Journal on
Applied Mathematics, 82(2):526–548, 2022. 11



Translating the framework to MLIPs

• A toy ML potential with aPIP

E (R) =
3∑

k=2

∑
i

ak iBk i (R),

where the sum is over all admissible tuples i = (ij)
k(k−1)/2
j=1 given

a prescribed polynomial degree and {Bk i} is a polynomial basis.
• The parameters a = {ak i}.
• Equivalent formulation:

E(u) =
∑

V (Dyu(m)), where V = V2 + V3,

V3(Dy
0(m)) =

∑
σ 6=ρ

ψ(|ρ|, |σ|, |ρ− σ|),

ψ(x , y , z) = ψ̂(x + y + z , xy + xz + yz , xyz),

ψ̂(x , y , z) = a31 + a32x + a33x
2 + a34x

3 + a35y + a36xy + a37z .
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Translating the framework to MLIPs
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Conclusions

• Perhaps a way forward is to build a framework with MaxEnt in
mind? Specific formulation of constraints, specific change of
variables, specific basis functions, specific forms of nonlinearities
to guarantee statistiscal indepedence?

• Perhaps not worth it - need to check how the choice of the prior
influences the posterior.

• Maximum Entropy Principle in principle provides a systematic
way of recasting physical constraints in a probabilistic language.

• Easier to use if the constraints can be cast in a form of
expectation.

• In practice, beyond simplest of cases it can easily get intractably
messy.
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