Cas van der Oord, Dávid Kovács, Gábor Csányi (University of Cambridge) Matthias Sachs (University of Birmingham) Christoph Ortner (University of British Columbia)

Hyperactive Learning (HAL)

Building minimal training databases for datadriven interatomic potentials from scratch

Introduction

Atomic Cluster Expansion (ACE)

Bayesian view, posterior, committees

Minimal databases

'How much' data needed to describe bulk, amorphous and liquid properties (Si)?

• Hyperactive Learning (HAL)

Biasing Active Learning (AL) towards uncertainty

Results

Polymer (polyethylene glycol PEG) and alloys (AlSi10, AlSi10Mg, FeCrMnNiCo, MoNbTaW)

Atomic Cluster Expansion (ACE)

Systematically improvable set of polynomials fitting atomic energies

$$E_{tot} = \sum_{i} E_i(R)$$

• Expressing as a linear model

$$E_i(R) = \sum_{i} c_i \Phi_i(R) = \mathbf{c} \cdot \mathbf{\Phi}(R)$$

• Linear model \rightarrow (Bayesian) Linear regression

$$\begin{bmatrix} \mathbf{1} \\ R \end{bmatrix} = \{\mathbf{r}_{ij}\}_{j=1}^{N}$$

PES symmetries:

- translation
- permutation
- rotation

Bayesian Linear Regression

- Statistical linear problem $\mathbf{y} = \Psi \mathbf{c} + \boldsymbol{\epsilon}$
- Bayesian approach: posterior \propto prior x likelihood
- Prior:

 $p(\mathbf{c} \mid \alpha) = \mathcal{N}(\mathbf{c} \mid \mathbf{0}, \alpha^{-1}\mathbf{I})$

Bayesian Ridge Regression (BRR)

• Likelihood:

$$p(\mathbf{y} | \mathbf{c}, \beta) = \prod_{i=1}^{N_{obs}} \mathcal{N}(y_i | \mathbf{c} \cdot \mathbf{\Phi})$$

• Hyperparameter optimisation: α, β

$p(\mathbf{c} \mid \alpha) = \mathcal{N}(\mathbf{c} \mid 0, A^{-1})$ $diag(A) = \{\alpha_1, \ldots, \alpha_{N_{basis}}\}$ Automatic Relevance Determination (ARD)

Posterior

- Sample committee members $\{\mathbf{c}^j\}_{j=1}^k$
 - $p(\mathbf{c} | \mathbf{y}, \alpha, \beta) = \mathcal{N}(\mathbf{c} | \boldsymbol{\mu})$
- (Cheap) committee predictions

 $F^{\mu}(R^*) = \mu \cdot \nabla \Phi(R^*)$

• Relative force uncertainty $U_i(R^*)$

$$\mu_{i=1} \text{ from posterior}$$

$$\mu_{i} = \beta \Sigma \Psi^{T} \mathbf{t}$$

$$\Sigma^{-1} = \alpha \mathbf{I} + \beta \Psi^{T} \Psi$$

*)
$$F^{j}(R^{*}) = \mathbf{c}^{j} \cdot \nabla \Phi(R^{*})$$

$$= 1 \|F_i^j(R^*) - F_i^\mu(R^*)\|$$

 $\|F_i^{\mu}(R^*)\| + \delta F$

- local
- relative
- regularised (δF)

Minimal database

- Si diamond database: 489 configurations, 16807 environments ^[2]
- Aim: assemble minimal database keeping accurate properties

• Greedy algorithm: select test configuration based on $U^{max} = \max U_i(R^*)$

Error correlations

Si diamond properties

Energy/Volume

18

16

22

20

Volume [ų/atom]

24

Elastic Constants

	B [GPa]	c_{11} [GPa]	c_{12} [GPa]	c_{44} [GI
ACE 3%	98.2 [+19%]	188.1 [+28%]	53.3 [+6%]	79.7 [+
ACE 4%	84.2 [+2%]	159.8 [+9%]	46.4 [-8%]	75.7 [+
ACE 5%	$82.5 \ [0\%]$	148.7 [+1%]	49.3 [-2%]	73.7 [+
DFT	82.6	147.2	50.3	73.1

Si diamond properties

Thermal Properties

Elastic Constants

	B [GPa]	c_{11} [GPa]	c_{12} [GPa]	c_{44} [GI
ACE 3%	98.2 [+19%]	188.1 [+28%]	53.3 [+6%]	79.7 [+
ACE 4%	84.2 [+2%]	159.8 [+9%]	46.4 [-8%]	75.7 [+
ACE 5%	$82.5 \ [0\%]$	148.7 [+1%]	49.3 [-2%]	73.7 [+
DFT	82.6	147.2	50.3	73.1

Si database

- Si diamond reduced from 489 to 17 configurations
- More diverse configuration types require more data

How to build minimal databases from scratch?

jurations nore data

Hyperactive Learning • HAL potential energy surface $\tilde{E}(R^*)$ $\tilde{E}(R^*) =$ Taking derivative $\nabla \sigma(R^*) = \frac{\nabla \sigma^2(R^*)}{\sigma(R^*)}$ • Biasing force $F^{\hat{\sigma}^2}(R^*)$ $F^{\hat{\sigma}^2}(R^*) := \nabla \hat{\sigma}^2(R^*) = \frac{2}{k} \sum_{j=1}^k \left(F_{j=1}^k \right)^{k-1}$

$$g (HAL)$$
*)
$$= E(R^*) - \tau \sigma(R^*)$$

$$= \frac{2\Phi(R^*)^T \Sigma \nabla \Phi(R^*)}{\sigma(R^*)} \xrightarrow{\text{committer}}_{\{c_j\}_{j=1}^k} \{c_j\}_{j=1}^k$$

$$(E^j(R^*) - E^\mu(R^*)) (F^\mu(R^*) - F^j(R^*))$$

Hyperactive Learning (HAL) Equations of motion $F(R) = F^{\mu}(R) + F^{\gamma} + \tau F^{\sigma}(R) = MV(t)$ $V(t) = \dot{R}(t)$ • Adaptive biasing τ_r to keep $\tau_r F^{\sigma}(R)$ constant relative to $F^{\mu}(R)$

• Apply softmax to $U_i(R)$ and trigger DFT once threshold U^{tol} is reached

$U^{softmax}(R) = \max f^{softmax}(U_i(R))$

HAL: PEG-2

- Initial 20 configuration PEG-2 database (C₄H₁₀O₂)
- "Simple" ACE model (correlation order 3, polynomial degree 10)
- Benchmark AL vs HAL in achieving 1 million stable MD steps

Т	$ au_r$	Iterations	Timesteps
300K	0.0	33	$4.67 imes10^6$
	0.25	21	$6.61 imes 10^4$
400K	0.0	30	$1.66 imes 10^6$
	0.25	24	$3.95 imes 10^4$

HAL achieves MD stability faster than AL

HAL: PEG-4

HAL finds large errors at 500K

HAL: PEG-nAdd HAL DFT data up to PEG-32

Test: 700K PEG-200 MD (PBC)

HAL: AISi10

- Initial database (32-atom):
 - 10 random alloys
- 32 committee members
- Random alloy HAL:
 - swap/volume MC steps
 - thermostat at 800K
- Liquid HAL:
 - thermostat at 3000K
 - barostat at 0.1 GPa

1250 -1000 - $\mathbf{\Sigma}$ 750 -⊢ 500 250 0 -10 -P [GPa] 5 -0 -5 0.5 0.1 0.0 -

HAL iteration

HAL: AlSi10 random alloy

- 800K alloy HAL test database
- Test set error convergence
- Accelerate learning curve:
 - biasing (HAL)
 - sparsity (ARD)

AISi10

- HAL database (32-atom):
 - random: 42 configs
 - liquid: 46 configs
- Design matrix Ψ (9064 x 723)
- ARD fit (α' is relevance threshold)

α'	N_{basis}	Fit	Training Error		Test Error	
		(s)	E	\mathbf{F}	\mathbf{E}	\mathbf{F}
1k	38	1.58	7.693	0.135	8.006	0.147
10k	116	3.16	4.199	0.095	6.229	0.104
80k	295	16.86	2.401	0.080	5.131	0.089
300k	621	62.16	1.869	0.074	5.188	0.095

(17.0% of total)

AISi10

- HAL database (32-atom):
 - random: 42 configs
 - liquid: 46 configs
- Design matrix \ \ (9064 x 723)
- ARD fit (α' is relevance threshold)

α'	N _{basis}	Fit	Training Error		Test Error	
		(s)	E	\mathbf{F}	\mathbf{E}	\mathbf{F}
1k	38	1.58	7.693	0.135	8.006	0.147
10k	116	3.16	4.199	0.095	6.229	0.104
80k	295	16.86	2.401	0.080	5.131	0.089
300k	621	62.16	1.869	0.074	5.188	0.095

AISi10

- HAL database (32-atom):
 - random: 42 configs
 - liquid: 46 configs
- Design matrix Ψ (9064 x 723)
- ARD fit (α' is relevance threshold)

α'	N_{basis}	Fit	Training Error		Test Error	
		(s)	E	\mathbf{F}	\mathbf{E}	\mathbf{F}
1k	38	1.58	7.693	0.135	8.006	0.147
10k	116	3.16	4.199	0.095	6.229	0.104
80k	295	16.86	2.401	0.080	5.131	0.089
300k	621	62.16	1.869	0.074	5.188	0.095

3.0 2.5 --0.2 Heat capacity 1.5 -1.0 -0.5 -0.0 -600 700 800 900

Temperature [K]

AISi10Mg

Guinier-Preston zone T_m is 868K

MoNbTaW

• HAL database:

3500

4000

- 97 random (bcc) alloy - 151 liquid alloy
- Order/disorder transitions

disordered structure

MoNbTaW

ordered structure

FeCrMnNiCo

FeCrMnNiCo

• Experimental T_m is ~1350C or 1623K

Z method 1875 1850 1825 **∑** 1800 ⊢ 1775 1750 1725 1700 --20 -3P [GPa]

Conclusion

- Linear ACE models
- Sample committee members $\{\mathbf{c}_j\}_{j=1}^k$ from posterior
- Cheap committee evaluations
- Relative force uncertainty metric $U_i(R^*)$
- Reduce existing database using greedy algorithm
- HAL: bias MD towards uncertainty
- Softmax for increased sensitivity on emerging uncertainty
- Build minimal databases automatically and efficiently for polymers and alloys

Sources

- [1] Ralf Drautz, Atomic cluster expansion for accurate and transferable interatomic potentials, Phys. Rev. B, Condens. Matter, 99 (1), 2019
- [2] Albert P. Bartók, James Kermode, Noam Bernstein, and Gábor Csányi, Machine Learning a General-Purpose Interatomic Potential for Silicon, Phys. Rev. X 8, 041048, 2018