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Predictive accuracy for real materials

First-principles calculations promise quantitatively accurate simulations
that make no use of experimental data

Emergent physics from first principles: still a tremendous challenge

Machine learning to the rescue
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Grabowski et al., PRB (2009); Kapil, Engel, Rossi,MC, JCTC (2019)
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First-principles calculations promise quantitatively accurate simulations
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Musil et al., Chem. Rev. (2021)



Uncertainty and errors

We don’t talk about errors
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UQ for atomistic simulations
Errors from model approximations:

50 shades of DFT (and implementations!)
Classical vs quantum nuclei, Born-Oppenheimer vs non-adiabatic

Statistical convergence of averages, accelerated sampling
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Lejaeghere et al., Science (2016)



UQ for atomistic simulations
Errors from model approximations:
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UQ for atomistic simulations
Errors from model approximations:

50 shades of DFT (and implementations!)
Classical vs quantum nuclei, Born-Oppenheimer vs non-adiabatic

Statistical convergence of averages, accelerated sampling
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MC, Brain, Riordan, Manolopoulos Proc. Royal Soc. A (2012)



UQ for ML: the classics

NN sanity check comparing the outputs of multiple fits

Gaussian process regression provides built-in uncertainty measure

Active learning driven by error estimates
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Behler, J. Phys. Cond. Mat (2014)



UQ for ML: the classics

NN sanity check comparing the outputs of multiple fits

Gaussian process regression provides built-in uncertainty measure

Active learning driven by error estimates
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Deringer et al. Chem. Rev. (2021)



UQ for ML: the classics

NN sanity check comparing the outputs of multiple fits

Gaussian process regression provides built-in uncertainty measure

Active learning driven by error estimates
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Jinnouchi et al., Phys. Rev. B (2019)



What we do, what we need



A universal feature construction
Most frameworks can be expressed in terms of n-body correlations of
atom positions. Only difference - the choice of basis
Extension to a fully equivariant framework (NICE)
... to features to describe long-range interactions (LODE)
... and to message-passing, N-center features (MP-ACDC)

* * *
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Introductory review:Musil et al., Chem. Rev. (2021)

http://dx.doi.org/10.1021/acs.chemrev.1c00021
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Latest & greatest: Nigam, Pozdnyakov, Fraux,MC, JCP (2022)



Machine-learning for tensors
Want to learn vectors or general tensors?
Need features that are equivariant to rotations

dα
(
R̂Ai

)
=
∑
q

〈d |q〉 〈q|R̂A; ρ⊗νi ;α〉

10.1021/acs.jctc.1c00576
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Grisafi, Wilkins, Csányi, &MC, PRL (2018)

http://dx.doi.org/10.1103/PhysRevLett.120.036002
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Machine-learning for tensors
Want to learn vectors or general tensors?
Need features that are equivariant to rotations
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Wilkins, Grisafi, Yang, Lao, DiStasio,MC, PNAS (2019);

http://dx.doi.org/10.1073/pnas.1816132116
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Lewis, Grisafi,MC, Rossi, JCTC (2021)
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Integrated ML, beyond potentials
Predicting any property accessible to quantum calculations
Realistic time and size scales, with first-principles accuracy andmapping
of structural and functional properties
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Kapil, Wilkins, Lan,MC, JCP (2020)

http://dx.doi.org/10.1063/1.5141950


Integrated ML, beyond potentials
Predicting any property accessible to quantum calculations
Realistic time and size scales, with first-principles accuracy andmapping
of structural and functional properties
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N. Lopanitsyna, C. Ben Mahmoud,MC, Phys. Rev. Mater. (2021)

http://dx.doi.org/10.1103/PhysRevMaterials.5.043802


Integrated ML, beyond potentials
Predicting any property accessible to quantum calculations
Realistic time and size scales, with first-principles accuracy andmapping
of structural and functional properties
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V. Deringer et al., Nature (2021)

http://dx.doi.org/10.1038/s41586-020-03072-z


Integrated ML, beyond potentials
Predicting any property accessible to quantum calculations
Realistic time and size scales, with first-principles accuracy andmapping
of structural and functional properties
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Gigli et al., NPJ Comp. Mat. in press (2022)



Uncertainty quantification
made easy



Calibrated committee models
Ensemble of NRS models, trained on subsets of the train set

ȳ (A) =
1

NRS

∑
j

ỹj (A) , σ2 (A) =
1

NRS − 1

∑
i

(
ỹj (A)− ȳ (A)

)2
Verify accuracy by the distribution of errors P (|ȳ (A)− yA (A)| |σ (A))
Adjust the spread by maximum likelihood ỹj ← ȳ + α

(
ỹj − ȳ

)
Calibrated model can be used for easy uncertainty propgation

1. train set

subselection2.
committee
of models

3.
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Adjust the spread by maximum likelihood ỹj ← ȳ + α
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Musil et al., JCTC (2019)

http://dx.doi.org/10.1021/acs.jctc.8b00959


Uncertainty estimation on a shoestring
Most expensive step is usually features/kernels evaluation. Generating
committee by resampling allows inexpensive error estimation
Same idea applies to linear & (sparse) kernel models
Extension to NNs by only re-training output layer

1. train set

subselection2.
committee
of weights

representation
(expensive)

dot product
(cheap)
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Uncertainty estimation on a shoestring
Most expensive step is usually features/kernels evaluation. Generating
committee by resampling allows inexpensive error estimation
Same idea applies to linear & (sparse) kernel models
Extension to NNs by only re-training output layer
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Uncertainty estimation on a shoestring
Most expensive step is usually features/kernels evaluation. Generating
committee by resampling allows inexpensive error estimation
Same idea applies to linear & (sparse) kernel models
Extension to NNs by only re-training output layer
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Uncertainty estimation in action
Error vs uncertainty for the atomization energies of QM9

Uncertainty 6= error! Spread of predictions is what matters
‘‘Rejected’’ QM9 structures are highly uncertain

Raman spectra with uncertainty propagation
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Musil, Willatt,MC JCTC (2019)
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N. Raimbault, A. Grisafi,MC, M. Rossi, New J. Phys. (2019)

http://dx.doi.org/10.1088/1367-2630/ab4509
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Weighted baseline models

ML potential as a correction to a (semi)empirical baseline

Use baseline error (constant σb) and uncertainty (structure-dependent
σ (A)) to get a weighted-baseline model that avoids instability

V (A) = Vb (A) + V̄δ (A)

baseline
target

train region

14 Michele Ceriotti cosmo.epfl.ch Machine learning you can trust

Imbalzano et al. JCP (2021)

http://dx.doi.org/10.1063/5.0036522
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Weighted baseline models

ML potential as a correction to a (semi)empirical baseline

Use baseline error (constant σb) and uncertainty (structure-dependent
σ (A)) to get a weighted-baseline model that avoids instability
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σ2
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+
1

σ2 (A)
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σ2
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Vb (A) +
1

σ2 (A)

[
Vb (A) + V̄δ (A)

]]

baseline
target
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revert to baseline
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Uncertain sampling

Errors in ML-based thermodynamic averages combine effects on the
observable σ2

a and those from sampling σ2
aV

A committee of predictions can be obtained from a single trajectory!

〈a〉V (i) =
〈
a eβ(V̄−V (i))

〉
V̄

Statistically stable estimates with a Cumulant Expansion Approximation

〈a〉V (i),CEA ≈ 〈a〉V̄ − β
[〈

a
(
V (i) − V̄

)〉
V̄
− 〈a〉V̄

〈(
V (i) − V̄

)〉
V̄

]
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MC et al. PRSA (2012)

http://dx.doi.org/10.1098/rspa.2011.0413


UQ for interface pinning
Compute the phase diagram of GaxAs1−x : interface-pinning simulations
for a 2-component system
DFT-accurate ML potential, i-PI+LAMMPS+PLUMED setup
Estimate uncertainty in melting points

16 Michele Ceriotti cosmo.epfl.ch Machine learning you can trust

Imbalzano &MC, Phys. Rev. Materials (2021); ipi-code.org

ipi-code.org
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UQ for interface pinning
Compute the phase diagram of GaxAs1−x : interface-pinning simulations
for a 2-component system
DFT-accurate ML potential, i-PI+LAMMPS+PLUMED setup
Estimate uncertainty in melting points
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Regio-selective catalysis

Acid-catalyzed oxidation of phenol yields catechol and hydroquinone.
Regioselectivity is poorly understood

Very complex solution: phenol, H2O2, methanesulphonic acid. Explicit
simulations require hybrid DFT accuracy
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Rossi et al., JCTC (2020)

http://dx.doi.org/10.1021/acs.jctc.0c00362
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UQ for acid-base equilibria
Energetics described with a DFTB baseline and a MLP correction.
Accelerated by multiple time stepping
PIGLET thermostatting & ring-polymer contraction for the quantum
sampling, Plumed-driven metadynamics applied to the centroid
Metadynamics sampling of the dissociation of CH3SO2OH.
UQ for the free-energy profile!

Hybrid DFT 
correction fast

+

*

-

Hybrid DFT 
fullslowffcommittee

multiple 
time step
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Kapil, Behler,MC, JCP (2016); Zamani et al., Adv. Mater. (2020); Rossi et al., JCTC (2020)
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Outlook



A software stack for atomistic machine learning

Integrating ML and atomistic simulations: from representations to
models to advanced MD

Interoperability and data sharing with the rest of the ecosystem

i-PI: a universal force
engine for advanced 
(PI)MD simulations

scikit-cosmo: 
sklearn-style 
python library
of ML utilities

librascal: 
C++/python 
library for 
density-based 
features and 
(sparse) kernel 
models 

chemiscope: 
a portable, 
browser-based
structure-property 
explorer

feature 
selection

feature 
calculation

model
evaluation

data
analytics

trajectory
visualization

NICE

TENSOAP

CP2K

Quantum
ESPRESSO LAMMPS

Plumed

AiiDA
signac

QUIP

n2p2
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https://github.com/lab-cosmo/

https://github.com/lab-cosmo/


Computational science & modeling @ EPFL

cosmo.epfl.ch

21 Michele Ceriotti cosmo.epfl.ch Machine learning you can trust

http://cosmo.epfl.ch
https://twitter.com/lab_cosmo?ref_src=twsrc%5Etfw


Building trust and understanding for ML
ML is a purely inductive approach: dangerous in extrapolative contexts
Physics-based constraints, and understanding of mathematical
underpinnings, provide useful inductive biases
Uncertainty quantification: easy, cheap, and universally applicable

An inductivist turkey

22 Michele Ceriotti cosmo.epfl.ch Machine learning you can trust

B. Russel, The problems of philosophy, Chapter VI
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Backup slides



Machine-learning for tensors

Want to learn vectors or general tensors?
Need features that are equivariant to rotations

dα
↑

(Ai) =
∑
q

〈d |q〉 〈q|A; ρ⊗νi ;α
↑
〉

dα
(
R̂Ai

)
=
∑
q

〈d |q〉 〈q|R̂A; ρ⊗νi ;α〉

24 Michele Ceriotti cosmo.epfl.ch Machine learning you can trust

Glielmo, Sollich, De Vita, PRB (2017); Grisafi, Wilkins, Csányi, &MC, PRL (2018); Veit et al., JCP (2020)
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Machine-learning for tensors

Want to learn vectors or general tensors?
Need features that are equivariant to rotations

dα
↑

(Ai) =
∑
q
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yλµ
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Dλµµ′
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* **
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Grisafi, Wilkins, Csányi, &MC, PRL (2018); Willatt, Musil, &MC, JCP (2019)

http://dx.doi.org/10.1103/PhysRevLett.120.036002


Molecular polarizabilities at the CCSD level

Symmetry-adapted tensorial model of polarizabilities

Training on high-end CCSD calculations of small molecules

Extrapolate to larger molecules (tested up to aciclovir C8H11N5O3)

Better-than-DFT accuracy - try it on alphaml.org

2,2-dimethylhexane

octatetraene

cis-4-octene cysteine

tryptophan

guanine

methionine

fructose

Method RMSE
CCSD/ML 0.304
CCSD/DFT 0.573
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Wilkins, Grisafi, Yang, Lao, DiStasio,MC, PNAS (2019);

http://alphaml.org


Transferable model of the electron density
Expand the charge density on atom-centered basis φk ≡ RnYm

l
Learning of coefficients with symmetry-adapted kernels
Highly transferable: train on small molecules, predict on polypeptides
Condensed phase implementation. Scaling up complexity!

cc-pVQZ

RI-cc-pVQZ

26 Michele Ceriotti cosmo.epfl.ch Machine learning you can trust

Grisafi, Wilkins, Meyer, Fabrizio, Corminboeuf,MC, ACS Central Science (2019);

Meyer, Grisafi, Fabrizio,MC, Corminboeuf, Chem. Sci., (2019)

http://dx.doi.org/10.1021/acscentsci.8b00551
http://dx.doi.org/10.1021/acscentsci.8b00551
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Transferable model of the electron density
Expand the charge density on atom-centered basis φk ≡ RnYm

l
Learning of coefficients with symmetry-adapted kernels
Highly transferable: train on small molecules, predict on polypeptides
Condensed phase implementation. Scaling up complexity!
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Lewis, Grisafi,MC, Rossi, JCTC (2021)



Learning molecular Hamiltonians

Molecular Hamiltonian in an atomic orbital basis

Decompositon into irreducible symmetric blocks

Learn with a fully equivariant model

Consistent with molecular orbital theory by design

O diagonal

H1

H2

cross-species

off-diagonal
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Molecular Hamiltonian in an atomic orbital basis

Decompositon into irreducible symmetric blocks

Learn with a fully equivariant model
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ML, ML everywhere
(and all the errors did shrink)



Ab initio thermodynamics of water

Thermodynamics of water liquid/ice-Ih/ice-Ic.
Hybrid DFT+D3 level, with quantum nuclei
ML, for sampling, promote to full-DFT with free-energy perturbation
Melting point of water within ~5K. ∆GIh/Ic within 0.1 meV/molecule

29 Michele Ceriotti cosmo.epfl.ch Machine learning you can trust

Cheng, Engel, Behler, Dellago,MC, PNAS (2019)

http://dx.doi.org/10.1073/pnas.1815117116
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Liquid-liquid phase transition in dense H
Atomic/molecular fluid for H at giant-planets conditions
Difficult to characterize the transition experimentally
First-order transition predicted by ab initio MD: finite-size effect?
ML potential and polyamorphic solution model finds critical point to lie on
the solid-liquid phase line

30 Michele Ceriotti cosmo.epfl.ch Machine learning you can trust

Cheng, Mazzola, Pickard,MC, Nature (2020)

http://dx.doi.org/10.1038/s41586-020-2677-y
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a)

c)

b)

C2/c-24 Cmce-12 Cmce-4C2-24P21/c-8
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Synthesis of GaAs nanowires
Synthesis of GaAs nanostructures: solid-liquid-gas process, Gal/GaAs
interface based on droplets of molten Ga
Problem: controlling the zinc-blende/wurtzite polymorphism
Role of surface polarity and liquid structure on defect rate
MD simulation with DFT/NN to study liquid ordering at the interfaces
More to come: transferable model of the GaxAs1−x binary

31 Michele Ceriotti cosmo.epfl.ch Machine learning you can trust

Mahdi Zamani et al., Adv. Materials (2020)

http://dx.doi.org/10.1002/adma.202001030
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Imbalzano,MC, Phys. Rev. Mat. (2021)

http://dx.doi.org/10.1103/PhysRevMaterials.5.063804


ML-powered NMR crystallograpy

Solid-state NMR relies on GIPAW-DFT to determine crystal structure

ML model trained on 2000 CSD structures. DFT accuracy of chemical
shielding predictions (RMSE H: 0.5, C: 5, N: 13, O: 18 ppm)

Precise enough to do structure determination - try it on shiftml.org

32 Michele Ceriotti cosmo.epfl.ch Machine learning you can trust

Paruzzo, Hofstetter, Musil, De,MC, Emsley, Nature Comm. (2018) [data: CSD-500]

http://shiftml.org
http://dx.doi.org/10.1038/s41467-018-06972-x


Quantum nuclei in NMR experiments
Combining a ML potential and NMR shielding model→ full ab initio
modeling of NMR at constant temperature
Thermal and quantum fluctuations affect the NMR shifts: comparable to
typical errors of reference DFT calculations

33 Michele Ceriotti cosmo.epfl.ch Machine learning you can trust

Engel, Kapil,MC J. Phys. Chem. Lett. (2021)



Consolidating the
mathematical foundations



Are representations complete?

More fundamental: are representations complete (injective)?

Well-known: 2-body correlations (distances) are ambiguous

Surprise: neither are 3 (angles) and 4 (dihedrals) body features!

Limits the asymptotic accuracy of models

35 Michele Ceriotti cosmo.epfl.ch Machine learning you can trust

Boutin, Kemper, Ann. Adv. Math. (2004); Figure from Bartók, Kondor, Csányi, PRB (2013)
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How about graph convolution?

Atoms: nodes in a fully-connected network. Edges are decorated by
(functions of) interatomic distances rij
Each node is augmented with information on its neighbors and their
distance: h (Ai) =

(
ai,
{

(aj , rij)
})

The multiset of neighbors and edges is hashed, and used as a label to
describe the nodes. The process can be iterated

*

36 Michele Ceriotti cosmo.epfl.ch Machine learning you can trust

SchNET: Schütt et al., JCP (2018)
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Graph convolution, pros and cons
Bad news: there are known discrete graphs that cannot be distinguished
by this procedure (W-L test)
Good news: things look good for molecular graphs (fully-connected,
distance-decorated 3D point clouds);
Distance-GNN resolve all known ACDC counterexamples

37 Michele Ceriotti cosmo.epfl.ch Machine learning you can trust

Sato, arxiv:2003.04078
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Bartók et al. PRB (2013); Pozdnyakov et al. PRL (2020)



A counterexample for distance-based GNN

A family of 3D point clouds with degenerate pairs for GNN. Key idea: the
distance matrix is identical, except for a swap

Can be folded to give finite 3D structures

Hard limit to the accuracy for plausible molecular geometries

Modern architectures that use angular/directional information (and

simple models based on |ρ⊗2i 〉) are immune

a b c

38 Michele Ceriotti cosmo.epfl.ch Machine learning you can trust

Pozdnyakov,MC, arXiv:2201.07136 (2022)
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The charged elephant
in the other room



Understanding the range of interactions
Representations are built for different cutoff radii
Dimensionality/accuracy tradeoff: a measure of the range of interactions
Multi-scale kernels K (A,B) =

∑
i wiKi (A,B) yield the best of all worlds

*

*
*
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Bartók, De, Poelking, Kermode, Bernstein, Csányi,MC, Science Advances (2017) [data: QM9, von Lilienfeld&C]

http://dx.doi.org/10.1126/sciadv.1701816


Understanding the range of interactions
Representations are built for different cutoff radii
Dimensionality/accuracy tradeoff: a measure of the range of interactions
Multi-scale kernels K (A,B) =

∑
i wiKi (A,B) yield the best of all worlds

1000 104500 2000 5000 2 ·104

n. train

1

2

5

M
A

E
[k

c
a

l/
m

o
l]

2 2.5 3

rC [Å]

1

1.5

2

2.5

3

2

M
A

E
[k

c
a

l/
m

o
l]

rC[Å] 2 2.5 3 3.5 4 5

40 Michele Ceriotti cosmo.epfl.ch Machine learning you can trust

Willatt, Musil,MC, PCCP (2018)

http://dx.doi.org/10.1039/C8CP05921G
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The problem with electrostatics

1/r decay→ pathological convergence of with interaction cutoff

Capturing true long-range effects with local models is hopeless
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Long-distance equivariant representation

Idea: local representation that reflects long-range asymptotics
1 Atom-density potential 〈ar|V 〉 =

∫
〈ar′|ρ〉 / |r′ − r|dr′

2 Usual gig: symmetrize, decompose locally, learn!

Efficient evaluation in reciprocal space

42 Michele Ceriotti cosmo.epfl.ch Machine learning you can trust

Grisafi,MC, JCP (2019)

http://dx.doi.org/10.1063/1.5128375
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∫
〈ar′|ρ〉 / |r′ − r|dr′

2 Usual gig: symmetrize, decompose locally, learn!

Efficient evaluation in reciprocal space

*
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Binding of charged molecules, and beyond

A challenging test: rigid-molecule binding curves of charged dimers from
the BioFragmentsDB

‘‘Multi-scale’’ LODE features |ρi ⊗ Vi〉map to multipole electrostatics but
enable learning all sorts of long-range physics
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Grisafi,MC, JCP (2019); Grisafi, Nigam,MC, Chem. Sci. (2021)

http://dx.doi.org/10.1039/D0SC04934D


Integrated ML models
beyond size and time limits



Structural and functional properties, combined
Predicting any property accessible to quantum calculations
Realistic time and size scales, with first-principles accuracy andmapping
of structural and functional properties
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Kapil, Wilkins, Lan,MC, JCP (2020)

http://dx.doi.org/10.1063/1.5141950


Structural and functional properties, combined
Predicting any property accessible to quantum calculations
Realistic time and size scales, with first-principles accuracy andmapping
of structural and functional properties
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N. Lopanitsyna, C. Ben Mahmoud,MC, Phys. Rev. Mater. (2021)

http://dx.doi.org/10.1103/PhysRevMaterials.5.043802


Structural and functional properties, combined
Predicting any property accessible to quantum calculations
Realistic time and size scales, with first-principles accuracy andmapping
of structural and functional properties
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V. Deringer et al., Nature (2021)

http://dx.doi.org/10.1038/s41586-020-03072-z


Structural and functional properties, combined
Predicting any property accessible to quantum calculations
Realistic time and size scales, with first-principles accuracy andmapping
of structural and functional properties

45 Michele Ceriotti cosmo.epfl.ch Machine learning you can trust

Gigli et al., arxiv: 2111.05129



A software stack for atomistic machine learning

Integrating ML and atomistic simulations: from representations to
models to advanced MD

Interoperability and data sharing with the rest of the ecosystem

i-PI: a universal force
engine for advanced 
(PI)MD simulations

scikit-cosmo: 
sklearn-style 
python library
of ML utilities

librascal: 
C++/python 
library for 
density-based 
features and 
(sparse) kernel 
models 

chemiscope: 
a portable, 
browser-based
structure-property 
explorer

feature 
selection

feature 
calculation

model
evaluation

data
analytics

trajectory
visualization

NICE

TENSOAP

CP2K

Quantum
ESPRESSO LAMMPS

Plumed

AiiDA
signac

QUIP

n2p2
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https://github.com/lab-cosmo/

https://github.com/lab-cosmo/


PHYSICS

DATA
symmetries

locality

scaling/conservation laws

training targets

affordable
accuracy

flexibility
"beyond models"

advanced
analytics

integrated ML models

multiparadigm simulations

quantitative description
of emergent behavior

Slides→ tinyurl.com/ceriotti-2022-caltech
Review→ Musil et al. ChemRev (2021)

Code:→ github.com/lab-cosmo

https://tinyurl.com/ceriotti-2022-caltech
https://doi.org/10.1021/acs.chemrev.1c00021
https://github.com/lab-cosmo/




A Dirac notation for ML

features 
index

representation
target & nature

radial indices

angular channels

structure

center
field

correlation
order parity

rot. 
symmetry

A representation maps a structure A (or one environment Ai ) to a vector
discretized by a feature index Q
Bra-ket notation 〈Q|A; rep.〉 indicates in an abstract way this mapping,
leaving plenty of room to express the details of a representation
Dirac-like notation reflects naturally a change of basis, the construction
of a kernel, or a linear model

〈Y |A〉 =

∫
dQ 〈Y |Q〉 〈Q|A〉
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Willatt, Musil,MC, JCP (2019); https://tinyurl.com/dirac-rep
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A representation maps a structure A (or one environment Ai ) to a vector
discretized by a feature index Q
Bra-ket notation 〈Q|A; rep.〉 indicates in an abstract way this mapping,
leaving plenty of room to express the details of a representation
Dirac-like notation reflects naturally a change of basis, the construction
of a kernel, or a linear model

E(A) = 〈E |A〉 ≈
∫

dQ 〈E |Q〉 〈Q|A〉
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Willatt, Musil,MC, JCP (2019); https://tinyurl.com/dirac-rep
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What you ask is what you get

Understanding what goes into a representation is key to achieve
meaningful results from automated data analytics

Example: you don’t alwayswant to have rotational invariance
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Variations on a theme
Most of the existing density-based representations and kernels emerge
as special cases of this framework

Basis set choice - e.g. plane waves basis for |ρ⊗2
i 〉 (Ziletti et al. N.Comm 2018)

Projection on symmetry functions (Behler-Parrinello, DeepMD)

〈k|A; ρ⊗2〉 =
∑
ij∈A

eik·rij
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Willatt, Musil,MC, JCP (2019), https://arxiv.org/pdf/1807.00408
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Measuring feature spaces
Quantitative comparison of relative information content of different
features, metrics & kernels
Feature space Reconstruction Error (FRE): linearly-embeddable mutual
information

GFRE(F → F ′) = min
P∈RnF×nF′

‖XF ′ − XFP‖

52 Michele Ceriotti cosmo.epfl.ch Machine learning you can trust

Goscinski, Fraux,MC, MLST (2021)
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Density expansion and SOAP

What if we use radial functions and spherical harmonics?

Symmetrized tensor product→ SOAP power spectrum!

Easily generalized to higher body order.
δ-distribution limit→ atomic cluster expansion

53 Michele Ceriotti cosmo.epfl.ch Machine learning you can trust

Bartók, Kondor, Csányi, PRB (2013); Willatt, Musil,MC, JCP (2019); Drautz, PRB (2019)
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Two-neighbors descriptors
Construction of a three-body (ν = 2) invariant atomic descriptor

1 Define relative position of neighbors (translation-invariant)
2 Positions are transformed in a neighbor density (permutation invariant)
3 Symmetrize over rotations a tensor product of the neighbor densities
4 This is equivalent to a function of two distances and one angle
5 g → δ limit⇒ list of 2-neighbors tuples (rj1 i , rj2 i , r̂j1 i · r̂j2 i)
6 Linear model⇒ 3-body potential!
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Density trick in an 〈nlm| basis
The symmetrized correlations can be computed in closed form using a
discrete basis

The neighbor density can be expanded on a basis of radial functions
〈x|n〉 ≡ Rn(x) and spherical harmonics 〈x̂|lm〉 ≡ Ym

l (x̂)
Spherical harmonics transform linearly under rotations based on Wigner
rotation matrices Dl

(
R̂
)

Orthogonality of Wigner matrices yields the SOAP powerspectrum
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A hierarchy of equivariant features

A generalization of the definition yields N-body features that transform
like angular momenta

〈X |ρ⊗νi ;σ;λµ〉

Recursive construction based on sums of angular momenta and an
expansion of the atom density

〈n1l1k1|ρ⊗1i ;λµ〉 ≡ 〈n1λ (−µ)|ρi〉 δl1λδk1λδσ1 ≡ 〈n1|ρ
⊗1
i ;λµ〉

〈. . . ; nν lνkν ; nlk|ρ⊗(ν+1)
i ;σ;λµ〉 = δσ((−1)l+k+λs)ckλ×∑

qm

〈lm; kq|λµ〉 〈n|ρ⊗1i ; lm〉 〈. . . ; nν lνkν |ρ⊗νi ; s; kq〉

Can be used to compute efficiently invariant features |ρ⊗νi ;0;00〉

56 Michele Ceriotti cosmo.epfl.ch Machine learning you can trust

Nigam, Pozdnyakov,MC, JCP (2020)

http://dx.doi.org/10.1063/5.0021116


NICE features for ML
Problem: number of features grows exponentially with ν
Solution: an N-body iterative contraction of equivariants (NICE)
framework

After each body order increase, the most relevant features are selected and
used for the next iteration
Systematic convergence with ν and contraction truncation

body-order
iteration

contraction

10.1063/5.0021116
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Machine-learning the periodic table
How to learn with multiple species? Decorate atomic Gaussian with
elemental kets |H〉, |O〉, . . .
Expand each ket in a finite basis, |α〉 =

∑
J uαJ |J〉. Optimize coefficients

Dramatic reduction of the descriptor space, more effective learning . . .
. . . and as by-product get a data-driven version of the periodic table!

*

*

*
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Machine-learning the periodic table
How to learn with multiple species? Decorate atomic Gaussian with
elemental kets |H〉, |O〉, . . .
Expand each ket in a finite basis, |α〉 =

∑
J uαJ |J〉. Optimize coefficients

Dramatic reduction of the descriptor space, more effective learning . . .
. . . and as by-product get a data-driven version of the periodic table!
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Empedocles et al. (ca 360BC). Metaphor courtesy of Albert Bartók
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elemental kets |H〉, |O〉, . . .
Expand each ket in a finite basis, |α〉 =

∑
J uαJ |J〉. Optimize coefficients

Dramatic reduction of the descriptor space, more effective learning . . .
. . . and as by-product get a data-driven version of the periodic table!
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Elpasolite dataset. Reference curve (red) from Faber et al. JCP (2018)



Machine-learning the periodic table
How to learn with multiple species? Decorate atomic Gaussian with
elemental kets |H〉, |O〉, . . .
Expand each ket in a finite basis, |α〉 =

∑
J uαJ |J〉. Optimize coefficients

Dramatic reduction of the descriptor space, more effective learning . . .
. . . and as by-product get a data-driven version of the periodic table!
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Willatt, Musil, Ceriotti, PCCP (2018)



Recognizing active protein ligands

A SOAP-REMatch-based KSVM classifies active and inactive ligands with
99% accuracy; non-additive model is crucial!

Sensitivity analysis help identify the active “warhead” and could guide
drug design and optimization
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Bartok, De, Poelking, Kermode, Bernstein, Csanyi,MC, Science Advances (2017) [data: DUD-E, Shoichet]

http://dx.doi.org/10.1126/sciadv.1701816


Structure-property landscapes

Clustering/sketch-maps based on REMatch-SOAP correlate well with
qualitative classification of packing motifs, and with properties (ex.:
azapentacene structure-energy-property landscape maps)
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Musil, De, Yang, Campbell, Day,MC, Chemical Science (2018);http://interactive.sketchmap.org

http://dx.doi.org/10.1039/C7SC04665K
http://interactive.sketchmap.org
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Musil, De, Yang, Campbell, Day,MC, Chemical Science (2018);http://interactive.sketchmap.org
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Musil, De, Yang, Campbell, Day,MC, Chemical Science (2018);http://interactive.sketchmap.org

http://dx.doi.org/10.1039/C7SC04665K
http://interactive.sketchmap.org


Principal Covariates Regression
Very simple idea to combine PCA and latent-space LR to find a
dimensionality reduction that preserves variance and predicts well

` = α‖X− XPXTPTX‖2 + (1− α) ‖Y− XPXTPTY ‖2

Solution can be found working in sample space (looking for the
eigenvectors of a modified Grammatrix)

K̃ = αXXT + (1− α)XPXYPT
XYX

T

... or in feature space by diagonalizing a modified covariance

C̃ = αXTX + (1− α)
(
XTX

)−1/2
XTYYTX

(
XTX

)−1/2
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S. de Jong and HAL Kiers, Scandinavian Symposium on Chemometrics (1992)



Kernel PCovR
Kernel versions of PCovR can be obtained with a modified kernel
K̃ = αK + (1− α) ŶŶT , diagonalizing it and finding the projector

PKT =
(
αI + (1− α) (K + λI)−1 YŶ

)
UK̃Λ

1/2

K̃

Projection
along 2 PCs
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Helfrecht, Cersonsky, Fraux,MC, MLST (2020)



Where unsupervised meets supervised
Using KPCovR to reveal structure-property relations in databases of
materials structures
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Helfrecht, Cersonsky, Fraux,MC, MLST (2020)

http://dx.doi.org/10.1088/2632-2153/aba9ef


A Generalized Convex Hull Construction
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Anelli, Engel, Pickard &MC, PRM (2019); Engel, Anelli,MC, Pickard & Needs, Nature Comm. (2018)

http://dx.doi.org/10.1038/s41467-018-04618-6



