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Predictive accuracy for real materials

o First-principles calculations promise quantitatively accurate simulations
that make no use of experimental data

e Emergent physics from first principles: still a tremendous challenge
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Predictive accuracy for real materials

o First-principles calculations promise quantitatively accurate simulations
that make no use of experimental data

e Emergent physics from first principles: still a tremendous challenge
e Machine learning to the rescue
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Musil et al., Chem. Rev. (2021)
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Uncertainty and errors

We don’t talk about errors
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UQ for atomistic simulations

e Errors from model approximations:
o 50 shades of DFT (and implementations!)
o Classical vs quantum nuclei, Born-Oppenheimer vs non-adiabatic

Lejaeghere et al., Science (2016)
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H-binding free energy [eV]

UQ for atomistic simulations

e Errors from model approximations:
o 50 shades of DFT (and implementations!)
o Classical vs quantum nuclei, Born-Oppenheimer vs non-adiabatic
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UQ for atomistic simulations

e Errors from model approximations:
o 50 shades of DFT (and implementations!)
o Classical vs quantum nuclei, Born-Oppenheimer vs non-adiabatic
o Statistical convergence of averages, accelerated sampling
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UQ for ML: the classics

o NN sanity check comparing the outputs of multiple fits

E (arb. units)

simulation time

Behler, J. Phys. Cond. Mat (2014)
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UQ for ML: the classics

o NN sanity check comparing the outputs of multiple fits
o Gaussian process regression provides built-in uncertainty measure

Deringer et al. Chem. Rev. (2021)
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UQ for ML: the classics

o NN sanity check comparing the outputs of multiple fits
o Gaussian process regression provides built-in uncertainty measure
e Active learning driven by error estimates

0.20
@)
0.15

0.10

Real error (eVA-)

0.05
0.00
(b)

0.01

0.00
(©
0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8

t(ps) Jinnouchi et al., Phys. Rev. B (2019)

5 Michele Ceriotti cosmo.epfl.ch Machine learning you can trust

Spilling factor (x10%) Bayes error (eVA-1)



What we do, what we need



A universal feature construction

e Most frameworks can be expressed in terms of n-body correlations of
atom positions. Only difference - the choice of basis
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Introductory review: Musil et al., Chem. Rev. (2021)
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A universal feature construction

e Most frameworks can be expressed in terms of n-body correlations of
atom positions. Only difference - the choice of basis
e Extension to a fully equivariant framework (NICE)
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Introductory review: Musil et al., Chem. Rev. (2021)
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A universal feature construction

e Most frameworks can be expressed in terms of n-body correlations of
atom positions. Only difference - the choice of basis

o Extension to a fully equivariant framework (NICE)

e ... to features to describe long-range interactions (LODE)
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Introductory review: Musil et al., Chem. Rev. (2021)

7 Michele Ceriotti cosmo.epfl.ch Machine learning you can trust


http://dx.doi.org/10.1021/acs.chemrev.1c00021

A universal feature construction

e Most frameworks can be expressed in terms of n-body correlations of
atom positions. Only difference - the choice of basis

Extension to a fully equivariant framework (NICE)

... to Features to describe long-range interactions (LODE)

... and to message-passing, N-center features (MP-ACDC)
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Latest & greatest: Nigam, Pozdnyakov, Fraux, MC, JCP (2022)
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Machine-learning for tensors

e Want to learn vectors or general tensors?
Need features that are equivariant to rotations
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Grisafi, Wilkins, Csanyi, & MC, PRL (2018)
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Machine-learning for tensors

e Want to learn vectors or general tensors?
Need features that are equivariant to rotations
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Machine-learning for tensors

e Want to learn vectors or general tensors?
Need features that are equivariant to rotations
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Machine-learning for tensors

e Want to learn vectors or general tensors?
Need features that are equivariant to rotations
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Lewis, Grisafi, MC, Rossi, JCTC (2021)
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Machine-learning for tensors

e Want to learn vectors or general tensors?
Need features that are equivariant to rotations
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Machine-learning for tensors

e Want to learn vectors or general tensors?
Need features that are equivariant to rotations
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Integrated ML, beyond potentials

o Predicting any property accessible to quantum calculations
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Integrated ML, beyond potentials

o Predicting any property accessible to quantum calculations

N. Lopanitsyna, C. Ben Mahmoud, MC, Phys. Rev. Mater. (2021)
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Integrated ML, beyond potentials

o Predicting any property accessible to quantum calculations
o Realistic time and size scales, with first-principles accuracy and mapping
of structural and functional properties

V. Deringer et al., Nature (2021)
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Integrated ML, beyond potentials

o Predicting any property accessible to quantum calculations
o Realistic time and size scales, with first-principles accuracy and mapping
of structural and functional properties

Gigli et al., NPJ Comp. Mat. in press (2022)
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Uncertainty quantification
made easy



Calibrated committee models

e Ensemble of Nzs models, trained on subsets of the train set
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Musil et al., JCTC (2019)
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Calibrated committee models

e Ensemble of Nzs models, trained on subsets of the train set
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Calibrated committee models

e Ensemble of Nzs models, trained on subsets of the train set
_ 1 - 2 1 “ oo 2
y(A)—Nm;y,(A), o (A) = g7 Eij(y,(A) ¥ (A))

o Verify accuracy by the distribution of errors P (|y (A) — ya (A)| |o (A))
o Adjust the spread by maximum likelihood y; < y + o (¥, — ¥)
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Calibrated committee models

e Ensemble of Nzs models, trained on subsets of the train set
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o Verify accuracy by the distribution of errors P (|y (A) — ya (A)| |o (A))
o Adjust the spread by maximum likelihood y; < y + o (¥, — ¥)
o Calibrated model can be used for easy uncertainty propgation
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Uncertainty estimation on a shoestring

e Most expensive step is usually features/kernels evaluation. Generating
committee by resampling allows inexpensive error estimation
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Uncertainty estimation on a shoestring

e Most expensive step is usually features/kernels evaluation. Generating
committee by resampling allows inexpensive error estimation
e Same idea applies to linear & (sparse) kernel models

{(A, yA)} active set \ q|A kernels
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Uncertainty estimation on a shoestring

e Most expensive step is usually features/kernels evaluation. Generating
committee by resampling allows inexpensive error estimation

e Same idea applies to linear & (sparse) kernel models

e Extension to NNs by only re-training output layer

{(A,ya)} pre-trained A @O W (q|A) NN
network (expensive)
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Uncertainty estimation in action

e Errorvs uncertainty for the atomization energies of QM9
o Uncertainty # error! Spread of predictions is what matters

Musil, Willatt, MC JCTC (2019)
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Uncertainty estimation in action

e Errorvs uncertainty for the atomization energies of QM9
o Uncertainty # error! Spread of predictions is what matters
o "Rejected” QM9 structures are highly uncertain

Musil, Willatt, MC JCTC (2019)
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Uncertainty estimation in action

e Errorvs uncertainty for the atomization energies of QM9
o Uncertainty # error! Spread of predictions is what matters
o "Rejected” QM9 structures are highly uncertain

e Raman spectra with uncertainty propagation

N. Raimbault, A. Grisafi, MC, M. Rossi, New J. Phys. (2019)
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Uncertainty estimation in action

e Errorvs uncertainty for the atomization energies of QM9
o Uncertainty # error! Spread of predictions is what matters
o "Rejected” QM9 structures are highly uncertain

e Raman spectra with uncertainty propagation

N. Raimbault, A. Grisafi, MC, M. Rossi, New J. Phys. (2019)
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Weighted baseline models

e ML potential as a correction to a (semi)empirical baseline

V(A) =V, (A)+ Vs (A)

y(A) ‘ train region
y |

baseline
target .J-.

> A

Imbalzano et al. JCP (2021)
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Weighted baseline models

e ML potential as a correction to a (semi)empirical baseline

V(A) =V, (A)+ Vs (A)

train region
y(A) | ‘ 2
~J
baseline
target .J-.

Imbalzano et al. JCP (2021)
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Weighted baseline models

e ML potential as a correction to a (semi)empirical baseline

o Use baseline error (constant o) and uncertainty (structure-dependent
o (A)) to get a weighted-baseline model that avoids instability

UA) = L:i v UJ(A)] szvb )+ iz Ve (A) + Vs <A>J]

b
, train region ‘ ,
baseline revert to baseline o2 +o2(A)
target -

Imbalzano et al. JCP (2021)
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Weighted baseline models

e ML potential as a correction to a (semi)empirical baseline

o Use baseline error (constant o) and uncertainty (structure-dependent
o (A)) to get a weighted-baseline model that avoids instability

Imbalzano et al. JCP (2021)
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Uncertain sampling

o Errors in ML-based thermodynamic averages combine effects on the
observable ¢2 and those from sampling o2,

2 P—g.
e BV P (@) VP (2)

» X
Imbalzano et al. JCP (2021)
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Uncertain sampling

o Errors in ML-based thermodynamic averages combine effects on the
observable ¢2 and those from sampling o2,

» X
Imbalzano et al. JCP (2021)
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Uncertain sampling

o Errors in ML-based thermodynamic averages combine effects on the
observable ¢2 and those from sampling o2,

e A committee of predictions can be obtained from a single trajectory!

(@i = <a eﬂ(\?7v<">)>7

%

» X
Imbalzano et al. JCP (2021)
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Uncertain sampling

o Errors in ML-based thermodynamic averages combine effects on the
observable ¢2 and those from sampling o2,

e A committee of predictions can be obtained from a single trajectory!

(@)yo = <G eﬂ(va(i))>,

v
o Statistically stable estimates with a Cumulant Expansion Approximation
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MC et al. PRSA (2012)
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UQ for interface pinning

o Compute the phase diagram of GayAsq_y: interface-pinning simulations
for a 2-component system

Imbalzano & MC, Phys. Rev. Materials (2021); ipi- code.org
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UQ for interface pinning

o Compute the phase diagram of GayAsq_y: interface-pinning simulations
for a 2-component system
e DFT-accurate ML potential, i-PI+LAMMPS+PLUMED setup
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Imbalzano & MC, Phys. Rev. Materials (2021); ipi-code.org
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UQ for interface pinning

16

o Compute the phase diagram of GayAsq_y: interface-pinning simulations

for a 2-component system
e DFT-accurate ML potential, i-PI+LAMMPS+PLUMED setup
o Estimate uncertainty in melting points
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Imbalzano & MC, Phys. Rev. Materials (2021); ipi-code.org
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UQ for interface pinning

o Compute the phase diagram of GayAsq_y: interface-pinning simulations
for a 2-component system

e DFT-accurate ML potential, i-PI+LAMMPS+PLUMED setup

o Estimate uncertainty in melting points
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Imbalzano & MC, Phys. Rev. Materials (2021); ipi-code.org
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UQ for interface pinning
o Compute the phase diagram of GayAsq_y: interface-pinning simulations

for a 2-component system
e DFT-accurate ML potential, i-PI+LAMMPS+PLUMED setup

o Estimate uncertainty in melting points
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Imbalzano & MC, Phys. Rev. Materials (2021); ipi-code.org
Machine learning you can trust
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UQ for interface pinning

o Compute the phase diagram of GayAsq_y: interface-pinning simulations
for a 2-component system

e DFT-accurate ML potential, i-PI+LAMMPS+PLUMED setup

o Estimate uncertainty in melting points
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Imbalzano & MC, Phys. Rev. Materials (2021); ipi-code.org
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UQ for interface pinning

o Compute the phase diagram of GayAsq_y: interface-pinning simulations
for a 2-component system

e DFT-accurate ML potential, i-PI+LAMMPS+PLUMED setup

o Estimate uncertainty in melting points
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Imbalzano & MC, Phys. Rev. Materials (2021); ipi-code.org
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Regio-selective catalysis

e Acid-catalyzed oxidation of phenol yields catechol and hydroquinone.
Regioselectivity is poorly understood

Rossi et al., JCTC (2020)
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Regio-selective catalysis

e Acid-catalyzed oxidation of phenol yields catechol and hydroquinone.
Regioselectivity is poorly understood

e Very complex solution: phenol, H,O,, methanesulphonic acid. Explicit
simulations require hybrid DFT accuracy

Rossi et al., JCTC (2020)
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Regio-selective catalysis

e Acid-catalyzed oxidation of phenol yields catechol and hydroquinone.
Regioselectivity is poorly understood

e Very complex solution: phenol, H,O,, methanesulphonic acid. Explicit
simulations require hybrid DFT accuracy
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UQ for acid-base equilibria

e Energetics described with a DFTB baseline and a MLP correction.
Accelerated by multiple time stepping

o PIGLET thermostatting & ring-polymer contraction for the quantum
sampling, Plumed-driven metadynamics applied to the centroid

1 b 1
Hybrid DFT

slow fuII fast

]

Hybrid DFT
correction
I |
multlple
time step
[ ]
beads 1 - PI
VMETAD .
centroid

Kapil, Behler, MC, JCP (2016); Zamani et al., Adv. Mater. (2020); Rossi et al., JCTC (2020)

18 Michele Ceriotti cosmo.epfl.ch Machine learning you can trust


http://dx.doi.org/10.1021/acs.jctc.0c00362

UQ for acid-base equilibria

e Energetics described with a DFTB baseline and a MLP correction.
Accelerated by multiple time stepping

o PIGLET thermostatting & ring-polymer contraction for the quantum
sampling, Plumed-driven metadynamics applied to the centroid

o Metadynamics sampling of the dissociation of CH;SO,OH.

/

Kapil, Behler, MC, JCP (2016); Zamani et al., Adv. Mater. (2020); Rossi et al., JCTC (2020)
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UQ for acid-base equilibria

e Energetics described with a DFTB baseline and a MLP correction.
Accelerated by multiple time stepping

o PIGLET thermostatting & ring-polymer contraction for the quantum
sampling, Plumed-driven metadynamics applied to the centroid

o Metadynamics sampling of the dissociation of CH3SO,OH.

e UQ for the Free-energy profile!
25 s

151

10

FE [kJ/mol]

05 06 07 08 09 1.0
50 Imbalzano et al., JCP (2021)
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Outlook



A software stack for atomistic machine learning

o Integrating ML and atomistic simulations: from representations to
models to advanced MD

o Interoperability and data sharing with the rest of the ecosystem

Quantum i-Pl: a universal force
ESPRESSO engine for advanced LAMMPS
(PI)MD simulations Pl
model umed
CP2K evaluation trajectory
visualization
librascal: . .
C-++/python chemiscope:
library for a portable,
density-based feature browser-based
features and selectlon structure—property
(sparse) kernel explorer
models feature data
calculation analytics
NICE n2p2
scikit-cosmo: AiiDA
sklearn-style signac
TENSOAP python library
Quip of ML utilities

https://github.com/lab-cosmo/
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Computational science & modeling @ EPFL

cosmo.epfl.ch

él.‘-: CCMX
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http://cosmo.epfl.ch
https://twitter.com/lab_cosmo?ref_src=twsrc%5Etfw

Building trust and understanding for ML

e MLis a purely inductive approach: dangerous in extrapolative contexts

An inductivist turkey

B. Russel, The problems of philosophy, Chapter VI
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Building trust and understanding for ML

e MLis a purely inductive approach: dangerous in extrapolative contexts
e Physics-based constraints, and understanding of mathematical
underpinnings, provide useful inductive biases

Ao 1.45eV

Af
0.92eV. 4o 243eV
+ _
A7 A
0.39 eV 2.07 eV
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RMSE / eV

—%- SchNet, CV —— SOAP,CV - dGCNN, 4H,0
—-#- SchNet, A, —}— SOAP, A,

100 4
10-1 4
1072 4— T T
10? 10° 104
Ntrain

Pozdnyakov, MC, arXiv:2201.07136 (2022)
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Building trust and understanding for ML

e MLis a purely inductive approach: dangerous in extrapolative contexts

e Physics-based constraints, and understanding of mathematical
underpinnings, provide useful inductive biases

e Uncertainty quantification: easy, cheap, and universally applicable

1500{
liq
9 1000R#—=— bt
o]
©
g As+GaAs lig+GaAs
g 5001
et —— EXP )
—e— NNP /N T
0 ; ; ; ;
0.0 0.2 0.4 0.6 0.8 1.0
mol Ga

Imbalzano et al., JCP (2021); Imbalzano & MC, Phys. Rev. Materials (2021)
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Backup slides



Machine-learning for tensors

e Want to learn vectors or general tensors?
Need features that are equivariant to rotations

d, (A) = _ (d|q) (q|A; P

! q

d. (RA;) =" (dla) (qlRA; o} )
q

&R

Glielmo, Sollich, De Vita, PRB (2017); Grisafi, Wilkins, Csanyi, & MC, PRL (2018); Veit et al., JCP (2020)
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Machine-learning for tensors

24

e Want to learn vectors or general tensors?

Need features that are equivariant to rotations

d. (4) = > (dlg) (qlA; P
q

da (i?AI) = Z <d|q> Z Rao/ <q|Aa P,®V§ a/> = Z Rao/da’ (AI)
q a’

e%

&R

Glielmo, Sollich, De Vita, PRB (2017); Grisafi, Wilkins, Csanyi, & MC, PRL (2018); Veit et al., JCP (2020)
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Machine-learning for tensors

e Want to learn vectors or general tensors?
Need features that are equivariant to rotations

d. (4) = > (dlg) (qlA; P
q

da (i?AI) = Z <d|q> Z Rao/ <q|Aa P,®V§ a/> = Z Rao/da’ (AI)
q a’

e%

Veit, Wilkins, Yang, DiStasio, MC, JCP (2020)
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Machine-learning for tensors

e Want to learn vectors or general tensors?
Need features that are equivariant to rotations

d. (A) = Z (dlq) (g4 5773 )

Y

v (I?A/) => (d|q) Z ( ) (qlA; 275 M)

X1
de —X ® l ® X,

[Au) pi) i)

Grisafi, Wilkins, Csanyi, & MC, PRL (2018); Willatt, Musil, & MC, JCP (2019)

Machine learning you can trust
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Molecular polarizabilities at the CCSD level

Symmetry-adapted tensorial model of polarizabilities

Training on high-end CCSD calculations of small molecules
Extrapolate to larger molecules (tested up to aciclovir CgH11N505)
Better-than-DFT accuracy - try it on alphaml.org

ar
6 0 0

0 -9 0 | /
0 0 4) 4

z -
Y, |
2,2-dimethylhexane tryptophan x /s

Method RMSE
CCSD/ML  0.304
CCSD/DFT 0.573

octatetraene guanine fructose

cis-4-octene cysteine methionine
Wilkins, Grisafi, Yang, Lao, DiStasio, MC, PNAS (2019);
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http://alphaml.org

Transferable model of the electron density

o Expand the charge density on atom-centered basis ¢ = R,Y[”
e Learning of coefficients with symmetry-adapted kernels

cc-pvQz

RI-cc-pVQZ

Grisafi, Wilkins, Meyer, Fabrizio, Corminboeuf, MC, ACS Central Science (2019);
Meyer, Grisafi, Fabrizio, MC, Corminboeuf, Chem. Sci., (2019)
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Transferable model of the electron density

o Expand the charge density on atom-centered basis ¢ = R,Y[”
e Learning of coefficients with symmetry-adapted kernels
e Highly transferable: train on small molecules, predict on polypeptides

Grisafi, Wilkins, Meyer, Fabrizio, Corminboeuf, MC, ACS Central Science (2019);
Meyer, Grisafi, Fabrizio, MC, Corminboeuf, Chem. Sci., (2019)
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Transferable model of the electron density

Expand the charge density on atom-centered basis ¢, = R,Y/”
Learning of coefficients with symmetry-adapted kernels

Highly transferable: train on small molecules, predict on polypeptides
Condensed phase implementation. Scaling up complexity!

-107% =107 -107> —10% 0 10=® 1075 10~* 107°

Lewis, Grisafi, MC, Rossi, JCTC (2021)
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Learning molecular Hamiltonians

e Molecular Hamiltonian in an atomic orbital basis

__ cross-species [p%7)
off-diagonal |,%); +)
O_ diagonal |,®)

H1

H2

Nigam, Willatt, MC, JCP (2022)
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Learning molecular Hamiltonians
e Molecular Hamiltonian in an atomic orbital basis

o Decompositon into irreducible symmetric blocks

H1 H2p
[
N N
Mth Ii' M s
-
‘i‘ [TTTT]e

Nigam, Willatt, MC, JCP (2022)

Machine learning you can trust
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Learning molecular Hamiltonians

o Molecular Hamiltonian in an atomic orbital basis
o Decompositon into irreducible symmetric blocks
o Learn with a fully equivariant model

fitted

1.6
14
1.2
1.0
2
o
08%
T
0.6
0.4
0.2
00

Nigam, Willatt, MC, JCP (2022)
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Learning molecular Hamiltonians

o Learn with a fully equivariant model
o Consistent with molecular orbital theory by design

Molecular Hamiltonian in an atomic orbital basis
Decompositon into irreducible symmetric blocks

E1u . . Eiu . ‘ B1u .
Y oo B
° O..O ° ... ". .‘. 0o
® o ®e ¢ | O \
-1.155 . -1.155 -0.764 .
E29 29 BZg
) ° ) ) o o
t- X 0@ o o
o® @ - 3 3 o | o0 O o
o® (L) o ©
o) [) ) [ o o
-0.734 [ | -0.734 || -0.476 ||

27 Michele Ceriotti cosmo.epfl.ch

Nigam, Willatt, MC, JCP (2022)
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Learning molecular Hamiltonians

Molecular Hamiltonian in an atomic orbital basis
Decompositon into irreducible symmetric blocks

o Learn with a fully equivariant model

o Consistent with molecular orbital theory by design

e—
2o

-0.075 -0.050 -0.025 0.000 0.025 0.050 0.075
RMSD / A

& /a.u.

Nigam, Willatt, MC, JCP (2022)
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ML, ML everywhere
(and all the errors did shrink)



Ab initio thermodynamics of water

o Thermodynamics of water liquid/ice-lh/ice-Ic.
o Hybrid DFT+D3 level, with quantum nuclei

Cheng, Engel, Behler, Dellago, MC, PNAS (2019)
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Ab initio thermodynamics of water

o Thermodynamics of water liquid/ice-lh/ice-Ic.
o Hybrid DFT+D3 level, with quantum nuclei
e ML, for sampling, promote to full-DFT with free-energy perturbation

Cheng, Engel, Behler, Dellago, MC, PNAS (2019)
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Ab initio thermodynamics of water

o Thermodynamics of water liquid/ice-lh/ice-Ic.

Hybrid DFT+D3 level, with quantum nuclei

e ML, for sampling, promote to full-DFT with free-energy perturbation
Melting point of water within ~5K. AGy,/,c within 0.1 meV/molecule

Cheng, Engel, Behler, Dellago, MC, PNAS (2019)
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Liquid-liquid phase transition in dense H

e Atomic/molecular fluid for H at giant-planets conditions
o Difficult to characterize the transition experimentally

Cheng, Mazzola, Pickard, MC, Nature (2020)
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Liquid-liquid phase transition in dense H

e Atomic/molecular fluid for H at giant-planets conditions

o Difficult to characterize the transition experimentally

o First-order transition predicted by ab initio MD: finite-size effect?

e ML potential and polyamorphic solution model finds critical point to lie on
the solid-liquid phase line

30

a) —0- P —o- C,™* = Ty = = Tos v Te b) P [ofcm’] ® C, [J/K/mol]
T i " ! 1.24 ~_ T
3000 Celliers 2018 oA l 1.22 P
. Knudson 2015 @ 1-2E350GPa S I
Ohta2015 O 108 | GE T
Zaghoo 2017, 2016 A 5 1 \_20
o~ 112
2000 Mecwilliams 2016 Tos E 1.1E300GPy : : “ =
- .. o 1.08 440
< 5 106
= 2 104 320
Joag 102200P8 T
g o098 140
S 096
1000 < 0w 320
102 200GPs o
0.86 T e
. I 0.84 i 320
Py ] 082f1806Pa o
) m 0 0.71 T T ; 40
0.7 20
0.69F100GPa~_ " Lo
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Machine learning you can trust


http://dx.doi.org/10.1038/s41586-020-2677-y

Synthesis of GaAs nanowires

o Synthesis of GaAs nanostructures: solid-liquid-gas process, Ga;/GaAs
interface based on droplets of molten Ga
e Problem: controlling the zinc-blende/wurtzite polymorphism

Mahdi Zamani et al., Adv. Materials (2020)
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Synthesis of GaAs nanowires

o Synthesis of GaAs nanostructures: solid-liquid-gas process, Ga;/GaAs
interface based on droplets of molten Ga

e Problem: controlling the zinc-blende/wurtzite polymorphism

e Role of surface polarity and liquid structure on defect rate

Mahdi Zamani et al., Adv. Materials (2020)
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Synthesis of GaAs nanowires

o Synthesis of GaAs nanostructures: solid-liquid-gas process, Ga;/GaAs
interface based on droplets of molten Ga

e Problem: controlling the zinc-blende/wurtzite polymorphism

e Role of surface polarity and liquid structure on defect rate

Mahdi Zamani et al., Adv. Materials (2020)
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Synthesis of GaAs nanowires

o Synthesis of GaAs nanostructures: solid-liquid-gas process, Ga;/GaAs
interface based on droplets of molten Ga

e Problem: controlling the zinc-blende/wurtzite polymorphism

e Role of surface polarity and liquid structure on defect rate

o MD simulation with DFT/NN to study liquid ordering at the interfaces

a) b) M Ga in ABC stacking P
@ Ga in ABA stacking ® @’ /‘i\
A
@e Ml q/,’/’ B
v
ZB-A i c
W As in ABC stacking
@ As in ABA stacking @@E‘
b A
[ om il
(1303 ® [111] P B
WZ-B | H
/\/“,\ (25, | | wz-BIlN A
o 2 [112] [112]

Mahdi Zamani et al., Adv. Materials (2020)
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Synthesis of GaAs nanowires

o Synthesis of GaAs nanostructures: solid-liquid-gas process, Ga;/GaAs
interface based on droplets of molten Ga
e Problem: controlling the zinc-blende/wurtzite polymorphism

e Role of surface polarity and liquid structure on defect rate

MD simulation with DFT/NN to study liquid ordering at the interfaces
More to come: transferable model of the GayAs_y binary

31

lig+GaAs

1500
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2 1000 fp—= e
=]
©
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[ —— EXP
—— NNP GaAs
0
0.0
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02 04 06 08 1.0

mol Ga

Imbalzano, MC, Phys. Rev. Mat. (2021)
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ML-powered NMR crystallograpy

o Solid-state NMR relies on GIPAW-DFT to determine crystal structure

e ML model trained on 2000 CSD structures. DFT accuracy of chemical
shielding predictions (RMSE H: 0.5, C: 5,N: 13, O: 18 ppm)

e Precise enough to do structure determination - try it on shiftml.org

Paruzzo, Hofstetter, Musil, De, MC, Emsley, Nature Comm. (2018) [data: CSD-500]

32 Michele Ceriotti cosmo.epfl.ch Machine learning you can trust


http://shiftml.org
http://dx.doi.org/10.1038/s41467-018-06972-x

Quantum nuclei in NMR experiments

e Combining a ML potential and NMR shielding model — full ab initio
modeling of NMR at constant temperature

e Thermal and quantum fluctuations affect the NMR shifts. comparable to
typical errors of reference DFT calculations

a-succinic acid y-glycine
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Engel, Kapil, MC J. Phys. Chem. Lett. (2021)
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Consolidating the
mathematical foundations



Are representations complete?

e More fundamental: are representations complete (injective)?
o Well-known: 2-body correlations (distances) are ambiguous

Boutin, Kemper, Ann. Adv. Math. (2004); Figure from Barték, Kondor, Csényi, PRB (2013)
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Are representations complete?

e More fundamental: are representations complete (injective)?
o Well-known: 2-body correlations (distances) are ambiguous
e Surprise: neither are 3 (angles) and 4 (dihedrals) body features!

A = (ag,ay,0)
B, B’ = (+bg, +b,,b.)
C* = (0,%cy,cs)

T

Pozdniakov, Willatt, Barték, Ortner, Csanyi, MC PRL (2020)
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Are representations complete?

e More fundamental: are representations complete (injective)?

o Well-known: 2-body correlations (distances) are ambiguous

e Surprise: neither are 3 (angles) and 4 (dihedrals) body features!
o Limits the asymptotic accuracy of models
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number of training configurations

1(

rmse, kcal /mol

—

Pozdniakov, Willatt, Barték, Ortner, Csanyi, MC PRL (2020)
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How about graph convolution?

o Atoms: nodes in a fully-connected network. Edges are decorated by
(Functions of) interatomic distances r;

SchNET: Schiitt et al., JCP (2018)
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How about graph convolution?

o Atoms: nodes in a fully-connected network. Edges are decorated by
(Functions of) interatomic distances r;

e Each node is augmented with information on its neighbors and their
distance: h(4;) = (a; {(a;, ry)})
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How about graph convolution?

o Atoms: nodes in a fully-connected network. Edges are decorated by
(Functions of) interatomic distances r;

e Each node is augmented with information on its neighbors and their
distance: h(4;) = (a; {(a;, ry)})

e The multiset of neighbors and edges is hashed, and used as a label to
describe the nodes. The process can be iterated
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Graph convolution, pros and cons

o Bad news: there are known discrete graphs that cannot be distinguished
by this procedure (W-L test)

Sato, arxiv:2003.04078
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Graph convolution, pros and cons

o Bad news: there are known discrete graphs that cannot be distinguished
by this procedure (W-L test)

e Good news: things look good for molecular graphs (fully-connected,
distance-decorated 3D point clouds);

o Distance-GNN resolve all known ACDC counterexamples

Bartok et al. PRB (2013); Pozdnyakov et al. PRL (2020)

37 Michele Ceriotti cosmo.epfl.ch Machine learning you can trust



A counterexample for distance-based GNN

o A family of 3D point clouds with degenerate pairs for GNN. Key idea: the
distance matrix is identical, except for a swap

—_— - + ctet'v v ww
a A+ A e . b A o c i
© — & . ,
D)
A7 , 6 ;
@K Oy ’
e
z v C* = (p/4, ¢y, *c:)
y W W = (p/2,wy, ws)
(o V = (g, vy,0)

O = (p/2+0,,0,-0,)
Pozdnyakov, MC, arXiv:2201.07136 (2022)
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A counterexample for distance-based GNN

38

o A family of 3D point clouds with degenerate pairs for GNN. Key idea: the
distance matrix is identical, except for a swap

e Can be folded to give finite 3D structures

 —
At Lo
N ® [ y
v Vv ‘
w .
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O = (p/2+0,,0,,-0.)

Pozdnyakov, MC, arXiv:2201.07136 (2022)
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A counterexample for distance-based GNN

38

o A family of 3D point clouds with degenerate pairs for GNN. Key idea: the
distance matrix is identical, except for a swap

e Can be folded to give finite 3D structures
e Hard limit to the accuracy for plausible molecular geometries

-%- SchNet,CV  —— SOAP,CV =+ dGCNN, 4H,0
—#%- SchNet, Af, —— SOAP,Af,

Ao q45ev 100 ]
3
+ w
A 0926V 4o pagev 217
A; A5 1072 4, : .
102 10° 104
0.39 eV 2.07 eV

Pozdnyakov, MC, arXiv:2201.07136 (2022)
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A counterexample for distance-based GNN

o A family of 3D point clouds with degenerate pairs for GNN. Key idea: the
distance matrix is identical, except for a swap

e Can be folded to give finite 3D structures

e Hard limit to the accuracy for plausible molecular geometries

e Modern architectures that use angular/directional information (and

simple models based on [p{?)) are immune

Nigam, Fraux, MC, arXiv:2202.01566 (2022)
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The charged elephant
in the other room



Understanding the range of interactions

e Representations are built for different cutoff radii
o Dimensionality/accuracy tradeoff: a measure of the range of interactions

Bartok, De, Poelking, Kermode, Bernstein, Csanyi, MC, Science Advances (2017) [data: QMS9, von Lilienfeld&C]
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Understanding the range of interactions

e Representations are built for different cutoff radii
o Dimensionality/accuracy tradeoff: a measure of the range of interactions
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willatt, Musil, MC, PCCP (2018)
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Understanding the range of interactions

40

e Representations are built for different cutoff radii
o Dimensionality/accuracy tradeoff: a measure of the range of interactions
o Multi-scale kernels K (A, B) = >, w;K; (A, B) yield the best of all worlds
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The problem with electrostatics

e 1/r decay — pathological convergence of with interaction cutoff
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The problem with electrostatics

o 1/r decay — pathological convergence of with interaction cutoff
e Capturing true long-range effects with local models is hopeless

DFT local
0.00] mm=mmmmm e

—0.051

E [a.u.]

—0.101
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Long-distance equivariant representation

o Idea: local representation that reflects long-range asymptotics

Grisafi, MC, JCP (2019)
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Long-distance equivariant representation

o Idea: local representation that reflects long-range asymptotics
© Atom-density potential {(ar|V) = [ (ar'|p) /|f' —r|dr’

{ar(p) = 2_; daa;g(r —14)

Grisafi, MC, JCP (2019)
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Long-distance equivariant representation

o ldea: localrepresentation that reflects long-range asymptotics
© Atom-density potential {(ar|V) = [ (ar'|p) /|f' —r|dr’

(arlp) = ¥, buag(r —x0)  (ax|V) = [ (ar'|p) /|t — x| dr’

Grisafi, MC, JCP (2019)
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Long-distance equivariant representation

o Idea: local representation that reflects long-range asymptotics
© Atom-density potential {(ar|V) = [ (ar'|p) /|f' —r|dr’
@ Usual gig: symmetrize, decompose locally, learn!

o Efficient evaluation in reciprocal space

Grisafi, MC, JCP (2019)
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Binding of charged molecules, and

beyond

o A challenging test: rigid-molecule binding curves of charged dimers from

the BioFragmentsDB

o "Multi-scale” LODE features |p; ® V;) map to multipole electrostatics but

enable learning all sorts of long-range physics

b) charged-polar

0.0

® @
-01
-02 e
]
-03
50 55 60 65 70 75 80
d) polar-polar e) polar-apolar f) apolar-apolar
0.02 0.075
0.00 \ 0.050
5 -002 0.025
> _0.04 0.000
-0.06 -0.025
_0.08 -0.050 5

40 45 50 55 60 65 7.0
RIA]
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—

pR@p

—
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Grisafi, MC, JCP (2019); Grisafi, Nigam, MC, Chem. Sci. (2021)
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Integrated ML models
beyond size and time limits



Structural and functional properties, combined

o Predicting any property accessible to quantum calculations

—e— Experiment |R 300K
—— B3LYP+D3
—— revPBEO+D3
3
=2
B
Q
300K
RAMAN
3
[aq

500 1000 1500 2000 2500 3000 3500 4000
w [em™1]
Kapil, Wilkins, Lan, MC, JCP (2020)
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Structural and functional properties, combined

o Predicting any property accessible to quantum calculations

N. Lopanitsyna, C. Ben Mahmoud, MC, Phys. Rev. Mater. (2021)
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Structural and functional properties, combined

o Predicting any property accessible to quantum calculations
o Realistic time and size scales, with first-principles accuracy and mapping
of structural and functional properties

V. Deringer et al., Nature (2021)
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Structural and functional properties, combined

o Predicting any property accessible to quantum calculations
o Realistic time and size scales, with first-principles accuracy and mapping
of structural and functional properties

Gigli et al., arxiv: 2111.05129
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A software stack for atomistic machine learning

o Integrating ML and atomistic simulations: from representations to
models to advanced MD

o Interoperability and data sharing with the rest of the ecosystem

Quantum i-Pl: a universal force
ESPRESSO engine for advanced LAMMPS
(PI)MD simulations Pl
model umed
CP2K evaluation trajectory
visualization
librascal: . .
C-++/python chemiscope:
library for a portable,
density-based feature browser-based
features and selectlon structure—property
(sparse) kernel explorer
models feature data
calculation analytics
NICE n2p2
scikit-cosmo: AiiDA
sklearn-style signac
TENSOAP python library
Quip of ML utilities

https://github.com/lab-cosmo/
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affordable
accuracy

flexibility
"beyond models"

PHYSICS

advanced
analytics

symmetries

DATA

integrated ML models

locality

scaling/conservation laws

. . . . training targets
multiparadigm simulations

quantitative description Slides — tinyurl.com/ceriotti-2022-caltech
of emergent behavior Review — Musil et al. ChemRev (2021)
Code: — github.com/lab-cosmo


https://tinyurl.com/ceriotti-2022-caltech
https://doi.org/10.1021/acs.chemrev.1c00021
https://github.com/lab-cosmo/




A Dirac notation for ML

features A representation
index target & nature

correlation
/radial indic\es struc|ture order ity
—%ﬁ_
. N
<nll\1, . n,,/l}k,, A,/pi ,Uﬁxu
rot.
field |
angular channels center symmetry

e Arepresentation maps a structure A (or one environment A;) to a vector

discretized by a feature index Q

o Bra-ket notation (Q|A; rep.) indicates in an abstract way this mapping,
leaving plenty of room to express the details of a representation

o Dirac-like notation reflects naturally a change of basis,

<Y|A>=/do<Y|o> (Q1A)

Willatt, Musil, MC, JCP (2019); https://tinyurl.com/dirac-rep
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A Dirac notation for ML

features A representation
index target & nature

correlation
/radial indic\es struc|ture order ity
—%ﬁ_
. N
<nll\1, . n,,/l}k,, A,/pl- ,U,ta\u
rot.
field |
angular channels center symmetry

e Arepresentation maps a structure A (or one environment A;) to a vector
discretized by a feature index Q

o Bra-ket notation (Q|A; rep.) indicates in an abstract way this mapping,
leaving plenty of room to express the details of a representation

o Dirac-like notation reflects naturally a change of basis, the construction
of a kernel,

K(AA) = (AA) ~ / d0(Al0) (QIA)

Willatt, Musil, MC, JCP (2019); https://tinyurl.com/dirac-rep
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A Dirac notation for ML

features A representation
index target & nature

correlation
/radial indic\es struc|ture order ity
—%ﬁ_
. N
<nll\1, . n,,/l}k,, A,/pl- ,U,ta\u
rot.
field |
angular channels center symmetry

e Arepresentation maps a structure A (or one environment A;) to a vector
discretized by a feature index Q

o Bra-ket notation (Q|A; rep.) indicates in an abstract way this mapping,
leaving plenty of room to express the details of a representation

o Dirac-like notation reflects naturally a change of basis, the construction
of akernel, or alinear model

E(A) = (EA) ~ / dO(£10) (QlA)

Willatt, Musil, MC, JCP (2019); https://tinyurl.com/dirac-rep
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What you ask is what you get

e Understanding what goes into a representation is key to achieve
meaningful results from automated data analytics

e Example: you don't always want to have rotational invariance

KPCA; KPCA;
0.000 0.005 -0.05 0.00 0.5

F 0.002 + 0.05
o~ Py
< <

Fo.ooo § Fooo &
¥ %

+ —0.002 F—0.05

data: Shibuta, Sakane, Takaki, Ohno, Acta Mat. (2016)

Machine learning you can trust
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What you ask is what you get

e Understanding what goes into a representation is key to achieve
meaningful results from automated data analytics

e Example: you don't always want to have rotational invariance

KPCA; KPCA;
0.000 0.005 -0.05 0.00 0.5

F 0.002 + 0.05
o~ Py
< <

Fo.ooo § Fooo &
¥ %

+ —0.002 F—0.05

data: Shibuta, Sakane, Takaki, Ohno, Acta Mat. (2016)
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Variations on a theme

e Most of the existing density-based representations and kernels emerge
as special cases of this framework

o Basis set choice - e.g. plane waves basis for \F) (Ziletti et al. N.Comm 2018)

(K|A 577) = 3 e

jicA

willatt, Musil, MC, JCP (2019), https://arxiv.org/pdf/1807.00408
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Variations on a theme

e Most of the existing density-based representations and kernels emerge
as special cases of this framework
o Basis set choice - e.g. plane waves basis for \p,@z) (Ziletti et al. N.Comm 2018)
o Projection on symmetry functions (Behler-Parrinello, DeepMD)

(abGalpP") = baq / dr G, (r) (brlp?"; g — &)

L B B L B B
0.4 b
0)03:_ N ]
=} S N
g
> 02f \ .
(D N
0.1 \ b
ot
0 1 2 3 4 5 6

r{A]

willatt, Musil, MC, JCP (2019), https://arxiv.org/pdf/1807.00408
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Measuring feature spaces

e Quantitative comparison of relative information content of different
features, metrics & kernels
o Feature space Reconstruction Error (FRE): linearly-embeddable mutual
information
GFRE(F — F)= min |[Xz — XzP||

PER"F XNF/
F!

f/
0O—0—Oo—— P
1,‘2 u

Goscinski, Fraux, MC, MLST (2021)
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Measuring feature spaces

e Quantitative comparison of relative information content of different
features, metrics & kernels
o Feature space Reconstruction Error (FRE): linearly-embeddable mutual

information
GFRE(F — F')= min |Xz — XzP|
PcR"F XNz
F'
Prr
ﬁ/
W= W— 3=
u

GFRE(F, F')

Goscinski, Fraux, MC, MLST (2021)
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Measuring feature spaces

e Quantitative comparison of relative information content of different
features, metrics & kernels
o Feature space Reconstruction Error (FRE): linearly-embeddable mutual

information
GFRE(F — F')= min | Xz — XzP|
PcR"F XNz
,F/
f-/
CO—O—0—Pp
T p U
FF!
\_/
GFRE(F', F)

Goscinski, Fraux, MC, MLST (2021)
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Measuring feature spaces

o Quantitative comparison of relative information content of different

features, metrics & kernels
o Feature space Reconstruction Error (FRE): linearly-embeddable mutual

information
PER"F X5/
carbon random methane
1.0t 1.0 FcF_1 '
—— GFRE(SOAP, BPSF) = FLF
0.751 —t— GFRE(BPSF, SOAP) 0.75 o SOAP vs
i BPSF
i
0.5¢ 0.5 ©) FCE
. c
F=F "0 GFRE(FF) 1
0.25¢ \ 0.25
0.0t ., ., ) : : 0.0t , \ \ .
11 61 181 377 699 35 101 534 1147
12764 180 384 700 36 192 540 1152
number of features g
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Density expansion and SOAP

o What if we use radial functions and spherical harmonics?

Bartok, Kondor, Csanyi, PRB (2013); Willatt, Musil, MC, JCP (2019); Drautz, PRB (2019)
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Density expansion and SOAP

o What if we use radial functions and spherical harmonics?
e Symmetrized tensor product — SOAP power spectrum!

Bartok, Kondor, Csanyi, PRB (2013); Willatt, Musil, MC, JCP (2019); Drautz, PRB (2019)
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Density expansion and SOAP

o What if we use radial functions and spherical harmonics?
e Symmetrized tensor product — SOAP power spectrum!

o Easily generalized to higher body order.
d-distribution limit — atomic cluster expansion

Bartok, Kondor, Csanyi, PRB (2013); Willatt, Musil, MC, JCP (2019); Drautz, PRB (2019)
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Two-neighbors descriptors

e Construction of a three-body (v = 2) invariant atomic descriptor
@ Define relative position of neighbors (translation-invariant)

Iy
A, A,
{rji =Tr; — I‘Z‘} e Az

Bartok, Kondor, Csanyi, PRB (2013)
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Two-neighbors descriptors

e Construction of a three-body (v = 2) invariant atomic descriptor
@ Define relative position of neighbors (translation-invariant)
@ Positions are transformed in a neighbor density (permutation invariant)

(ax|p;) = ZjEAi Oaa; (X|Tji; 9)
(x|rji; 9) = g(x —1ji)

Bartok, Kondor, Csanyi, PRB (2013)

54 Michele Ceriotti cosmo.epfl.ch Machine learning you can trust




Two-neighbors descriptors

e Construction of a three-body (v = 2) invariant atomic descriptor
@ Define relative position of neighbors (translation-invariant)
@ Positions are transformed in a neighbor density (permutation invariant)
© Symmetrize over rotations a tensor product of the neighbor densities

X I
.

(x; x| 4; pP%) = X

[dR(x|RA; p;)(x'|RA; p;)

willatt, Musil, MC, JCP (2019)
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Two-neighbors descriptors

e Construction of a three-body (v = 2) invariant atomic descriptor
@ Define relative position of neighbors (translation-invariant)
@ Positions are transformed in a neighbor density (permutation invariant)
© Symmetrize over rotations a tensor product of the neighbor densities
@ This is equivalent to a function of two distances and one angle

‘@\331
N .
(:cl,acg,@\A p®2
de $1R€Z|A;pi>

(x2R (&, cos O + &, sin 0)|4; p;)

willatt, Musil, MC, JCP (2019)
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Two-neighbors descriptors

e Construction of a three-body (v = 2) invariant atomic descriptor
@ Define relative position of neighbors (translation-invariant)
@ Positions are transformed in a neighbor density (permutation invariant)
© Symmetrize over rotations a tensor product of the neighbor densities
@ This is equivalent to a function of two distances and one angle
© g — ¢ limit = list of 2-neighbors tuples (1}, i, i, Ty - T,i)

(a1; x93 0] A; 622) =
D ivin 0(@1 = 15,3)0(z2 — 73
5(C089 — IA'jlz' . f‘jﬂ)

willatt, Musil, MC, JCP (2019)
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Two-neighbors descriptors

e Construction of a three-body (v = 2) invariant atomic descriptor
@ Define relative position of neighbors (translation-invariant)
@ Positions are transformed in a neighbor density (permutation invariant)
© Symmetrize over rotations a tensor product of the neighbor densities
@ This is equivalent to a function of two distances and one angle
© g — ¢ limit = list of 2-neighbors tuples (1}, i, i, Ty - T,i)
@ Linear model = 3-body potential!

[ (V)15 22; 0) (w1; 03 0] A; 652)
Zj1j2 V(leiv Tjais fjli ' szi)

willatt, Musil, MC, JCP (2019)
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Density trick in an (nlm| basis

e The symmetrized correlations can be computed in closed form using a
discrete basis

o The neighbor density can be expanded on a basis of radial functions
(x|ny = Rn(x) and spherical harmonics (x|(m) = Y"(X)

(x[im)

(nlm|A; p;) =
[ dx(nla) (im0 (x| 4; )
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Density trick in an (nlm| basis

e The symmetrized correlations can be computed in closed form using a
discrete basis

o The neighbor density can be expanded on a basis of radial functions
(x|ny = Rn(x) and spherical harmonics (x|(m) = Y"(X)

o Spherical harmonics transform linearly under rotations based on Wigner
rotation matrices D' (R)

el
» o
‘ - ‘ R|lm) = A
2 Do (Rl
(nlm; n'l ’\A pP?) = )
[ dR(nlm|RA; p;)(n'l'm’|RA; p;)
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Density trick in an (nlm| basis

e The symmetrized correlations can be computed in closed form using a
discrete basis

o The neighbor density can be expanded on a basis of radial functions
(x|ny = Rn(x) and spherical harmonics (x|(m) = Y"(X)

o Spherical harmonics transform linearly under rotations based on Wigner
rotation matrices D' (R)

o Orthogonality of Wigner matrices yields the SOAP powerspectrum

de Zkk’ D'lmk(R)valv/k:’(R) X
011/ Oy Ok e/

A

F3

(nn'1] A; p?) =
melm\A; pi)(n'lm|A; p;)
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A hierarchy of equivariant features

o A generalization of the definition yields N-body features that transform
like angular momenta

(X|p7"; 5 A
e Recursive construction based on sums of angular momenta and an
expansion of the atom density

(mbikipF T M) = (MA (=) |p) 817 0kn001 = (MilpPTs At

< n,,l kl,, nlk|p®(u+1 o /\/j,> = (50((_1)1+k+As) Co X
> (lm; kgl Ap) (|5 m) (.. 0Lk |7 s k)

qm

o Can be used to compute efficiently invariant features |p?";0; 00)

Nigam, Pozdnyakov, MC, JCP (2020)
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NICE features for ML

e Problem: number of features grows exponentially with v
o Solution: an N-body iterative contraction of equivariants (NICE)
framework
o After each body order increase, the most relevant features are selected and
used for the next iteration

body-order (NY; nlk|p® A1)

(nlp*tim)
iteration

>

contraction

(N¥[p?"kq)

(nlk|
[Aua)

(N”‘ <Nu+1‘pl®u+1)\'u>

Nigam, Pozdnyakov, MC, JCP (2020)
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NICE features for ML

e Problem: number of features grows exponentially with v

o Solution: an N-body iterative contraction of equivariants (NICE)
framework

o After each body order increase, the most relevant features are selected and
used for the next iteration

o Systematic convergence with v and contraction truncation

= V=1 = p=3 = NICE full == Conly
— V=2 —— V=4 —— NN ==+ C+H
100

e i |

0 S eeeeeee. o

=

rmse, kcal/mol
rmse%
rmse, kcal/mol

Nigam, Pozdnyakov, MC, JCP (2020)

Machine learning you can trust
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Machine-learning the periodic table

e How to learn with multiple species? Decorate atomic Gaussian with
elemental kets |H), |O), . . .
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Machine-learning the periodic table

e How to learn with multiple species? Decorate atomic Gaussian with
elemental kets |H), |O), . . .
e Expand each ket in a finite basis, |a) = >~ , u,,|J). Optimize coefficients

H) =05 )+01] )+02] )
C)=02] )+08] )+03] )
0)=0.1] Y+0.1] )+06] )

Empedocles et al. (ca 360BC). Metaphor courtesy of Albert Bartok
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Machine-learning the periodic table

e How to learn with multiple species? Decorate atomic Gaussian with
elemental kets |H), |O), . . .

e Expand each ket in a finite basis, |a) = >, u,,|J). Optimize coefficients

o Dramatic reduction of the descriptor space, more effective learning. . .

—e— Reference -#-- d;=2 —e— Standard SOAP
107 —e— di=1 —e— d;=4 —e— Multi-kernel

0.3

Test MAE (eV / atom)

0.1

0.06

250 500 1k 3k 6k
Number of training structures

Elpasolite dataset. Reference curve (red) from Faber et al. JCP (2018)
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Machine-learning the periodic table

58

e How to learn with multiple species? Decorate atomic Gaussian with
elemental kets |H), |O), . . .

e Expand each ket in a finite basis, |a) = >, u,,|J). Optimize coefficients

o Dramatic reduction of the descriptor space, more effective learning. . .

o ... and as by-product get a data-driven version of the periodic table!

B C N O F Ne
Al Si P S Cl Ar

Ga Ge As Se Br Kr
In Sn Sb Te | Xe
Tl Pb Bi

Willatt, Musil, Ceriotti, PCCP (2018)

Michele Ceriotti cosmo.epfl.ch Machine learning you can trust



Recognizing active protein ligands

o A SOAP-REMatch-based KSVM classifies active and inactive ligands with
99% accuracy; non-additive model is crucial!

e Sensitivity analysis help identify the active “warhead” and could guide
drug design and optimization

Bartok, De, Poelking, Kermode, Bernstein, Csanyi, MC, Science Advances (2017) [data: DUD-E, Shoichet]
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Structure-property landscapes

o Clustering/sketch-maps based on REMatch-SOAP correlate well with
qualitative classification of packing motifs, and with properties (ex.:
azapentacene structure-energy-property landscape maps)

Musil, De, Yang, Campbell, Day, MC, Chemical Science (2018);http://interactive.sketchmap.org
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Structure-property landscapes

o Clustering/sketch-maps based on REMatch-SOAP correlate well with
qualitative classification of packing motifs, and with properties (ex.:
azapentacene structure-energy-property landscape maps)

Musil, De, Yang, Campbell, Day, MC, Chemical Science (2018);http://interactive.sketchmap.org
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Structure-property landscapes

o Clustering/sketch-maps based on REMatch-SOAP correlate well with
qualitative classification of packing motifs, and with properties (ex.:
azapentacene structure-energy-property landscape maps)

Musil, De, Yang, Campbell, Day, MC, Chemical Science (2018);http://interactive.sketchmap.org

60 Michele Ceriotti cosmo.epfl.ch Machine learning you can trust


http://dx.doi.org/10.1039/C7SC04665K
http://interactive.sketchmap.org

Principal Covariates Regression

e Very simple idea to combine PCA and latent-space LR to find a
dimensionality reduction that preserves variance and predicts well

0= alX — XPxrPrx||> + (1 — @) ||[Y — XPxrPry|®

e Solution can be found working in sample space (looking for the
eigenvectors of a modified Gram matrix)

K=aXX" + (1 —a)XPyPL, X"
e ...orin feature space by diagonalizing a modified covariance

C=aX"X+(1-a) (X7X) " 2XTYYTX (X7X) "/
Nfeatures npca Nproperties
g Pxr 2 kS
2 = Prv | Gy
g Prx ¢& g

<

Pxy

S. de Jong and HAL Kiers, Scandinavian Symposium on Chemometrics (1992)
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Kernel PCovR

o Kernel versions oFAPACovR can be obtained with a modified kernel
K = aK+ (1 — ) YY', diagonalizing it and finding the projector

Per = (al + (1 —a) (K+ A" YY) UgAY?
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Where unsupervised meets supervised

e Using KPCovVR to reveal structure-property relations in databases of

materials structures
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http://dx.doi.org/10.1088/2632-2153/aba9ef

A Generalized Convex Hull Construction

Anelli, Engel, Pickard & MC, PRM (2019); Engel, Anelli, MC, Pickard & Needs, Nature Comm. (2018)
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