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Figure1:(a)ConvergenceofQMforcesnearthecoreofadislocationinthe�phaseatroomtemperature
(solidlines,fornearestneighbours,bluen.n.,andnextnearestneighbours,redn.n.n.ofthedislocation
core).ThedashedlinesindicatethepercentageerrorthattheEAMpotentialmakeswithrespecttoDFT.
Quantumcalculationsareonlystrictlyneededforthenearestneighboursofadislocationcore.(b)Atom-
isticmodelofaquadrupoleofscrewdislocationsinaNi-basedsuperalloy.Inset:dissociationofoneof
thescrewdislocationsintoShockleypartials,whichcanbetrackedbytwoseparatemobileQMregions
(redcircles).

2ProjectStructureandResourceManagement
KeyScientificGoals.Thekeytargetsofthisprojectaretostudytheglideofscrewdislocations
inthe�phase(initiallybulk,thenclosertothe�/�0interface),toevaluatetherelevantdiffusion
mechanismsandbarriers,andtostudydislocationclimbatthe�/�0interface,includingtherole
playedbyvacanciesinthisprocess.Theseoveralltargetscanbedecomposedintofourwork
packages:

•WP1—DissociationofaScrewDislocationintoShockleypartials.Studyingthemod-
ificationinducedonthesystembytheusageofquantumprecisionforthecoreatoms.
ExpectedstartdateMarch2014.

•WP2—Glideofadislocationinthe�phase.Evaluatingdiffusionbarriersforthe
dislocationglideasafunctionofappliedshearstrain.ExpectedstartdateMay2014.

•WP3—Glideofadislocationtowardstheinterface.Observingthemodificationof
thesebarriersasafunctionofthedistanceofdislocationsfromthe�/�0interface,and
investigatingdislocationpinning.ExpectedstartdateJune2014.

•WP4—Dislocation/vacancyinteractionattheinterface.Analysingtheroleplayedby
vacanciesintheclimbmotionofdislocationsattheinterface.ExpectedstartdateOctober
2014.
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Example: dislocation glide in Ni-based superalloys
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Nye Tensor

b =

Z

A
dS(↵ · n)↵ij Surface density of 

Burgers vector

↵ = r⇥GG Deformation tensor with 
respect to perfect bulk

Stokes theorem on to the 
surface enclosed by the 
Burgers circuit [5]
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Overview

These properties are due to the microscopic structure of this material, 
characterised by the precipitation of the gamma matrix (nickel FCC) into 
the gamma prime phase (an ordered Li3 structure with Al atoms at the 
corners and Ni atoms on the faces of the cube).Dislocation are pinned at 
the interface strengthening the alloy (precipitation hardening).

Nickel-based superalloys are one of the most suitable material for the 
construction of efficient turbines for power generation. They are 
characterised by: 
- Excellent mechanical strength 
- High temperature creep resistance 
- Resistance to corrosion and oxidation

The maximum operating temperature (and hence efficiency) of jet engines is limited by creep in their superalloy 
turbine blade. The understanding of these failure processes is poor at the nanoscale because of the intrinsic 
chemical complexity involved. 
The ‘Learn on the Fly’ (LOTF) approach [1] is a multiscale QM/MM scheme that allows the study of these “chemo-
mechanical” processes (tight coupling between long range stress and local chemistry) with QM accuracy.

Learn on the Fly (LOTF)

QM forces are evaluated on small clusters, a suitable buffer decouples QM region from vacuum. 
Quantum forces on the latter are discarded, and MM forces are used instead. A simple correction term 
is then added to the classical potential, its parameters fitted to reproduce DFT results within the 
quantum area. A predictor/corrector scheme is used to accelerate the dynamics (expensive QM 
calculations are performed only where and when required). [2]

The LOTF Scheme

Previous Applications of LOTF on Fracture Problems 

direction of motion, associated with each reconstruction event. If we
assume for simplicity that an average of n reconstruction events take
place during the time interval Dt for a given bead, its momentum mv
will drop by 2nmvt/Dt, where the parameter t=Dt is representative
of the time delay associated with each reconstruction. The number of
events is related to the propagation velocity by n 5 jvDt/l, where l is
the bilayer distance in the (111) direction, that is, the amount of
climb for each reconstruction event. Thus, the momentum change
is 2mjv2t/l, which is the nonlinear drag term in equation (1) dis-
cussed above. We note that if the frequency of reconstruction events
were constant for a given temperature, as is the case for simple acti-
vated processes, then j would scale as 1/v, and would just give rise to a
simple drag term, linear in the velocity. Thus, in an indirect way, this
model sheds light on the role of the cooperative, dynamic nature of
brittle fracture: at high speeds, the atoms near the crack tip are steered
towards clean cleavage.

We perform experimental studies of the low-crack-speed regime
using a technique for applying very small but steady and well-con-
trolled tensile loads. A silicon specimen is loaded by taking advantage
of the thermal expansivity mismatch between the sample and the
aluminium loading frame (Fig. 2b). Micrographs of the resulting
(111) fracture surface are shown in Fig. 2a, c. Triangular ridges, all
deviating in the same direction from the fracture surface, form at a
range of low crack speeds below about 800 m s21. At higher crack
speeds, of about 2,000 m s21, the surface is mirror smooth and no
ridges are present. The crystallographic direction of the deviation
(identical in over 40 independent samples) is the same as the recon-
struction-induced steps in the atomistic simulation, and the shape of
the ridges is qualitatively in agreement with the mesoscopic model
(Fig. 2c, d). Similar features have recently been reported23 under
more complicated loading conditions at a speed of about
1,000 m s21 (see Supplementary Information).

We next considered the (110) crack plane. Experiments have
shown that (110)½1!110" cracks propagating along the [001] direction
deflect out of the plane at very low velocity6,18, whereas (110)[001]
cracks propagating in the ½1!110" direction stay on the (110) plane up to
very high velocity (about 2,900 m s21) before also faceting onto (111)
planes6,7. Recent studies25 have assigned critical velocities for this
instability for various propagation directions and have shown that
in all cases the deflection is not immediate but only occurs after some
initial propagation on the (110) plane. We simulated the (110)½1!110"
crack propagation and observed the onset of this deflection. This
crack propagates by breaking a series of bonds, labelled A in Fig. 3a.
The system also contains type-B bonds, which are oriented at the
same angle with respect to the tension axis as A bonds. Resolving the
elastic stresses on the atomic scale reveals that B bonds located imme-
diately above and below the crack plane are almost as highly stressed
as A bonds. However, strong neighbour bonds connecting under-
coordinated atoms left exposed by the advancing crack make the A
bonds weaker than B bonds, so the former are expected to break
selectively during quasi-static (110) cleavage, consistent with the
low-speed experimental observations.

In the simulations we initially observe each newly exposed under-
coordinated surface atom snap back towards the subsurface region.
This induces significant local atomic motion and the excess energy
diffuses into the bulk crystal, but no immediate rebonding occurs as
long as the speed of propagation is sufficiently low. However, bond-
breaking events become more frequent with increasing crack speed,
and the local relaxations overlap in time. As more kinetic energy is
locally available, the fast crack front ‘stumbles’. Local reconstructions
involving the removal of under-coordinated atoms begin to occur on
the open surfaces. This removes the reason for selective A-bond
breaking and in our simulation we indeed observe B-bond breaking
events that deflect the crack front onto a (111) plane. Further simula-
tions reveal that under these conditions any slight disturbance away
from pure tension (for example a small extra shear strain component
as in Fig. 3b) can systematically reverse the initial relative stability of

A and B bonds. This results in multiple coherent breaking of B bonds,
effectively exposing (111) surfaces, consistent with the crack motion
observed experimentally (Fig. 3c–e).

No near degeneracy of crack-tip bonds exists in the orthogonal
½1!110" direction, consistent with the observation of instabilities only
at much higher speeds6. The deflection mechanism is thus only
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Figure 3 | The (110)[1 ·10] crack system. a, Geometry of the crack tip
propagating straight at low speeds by sequential breaking of type A bonds
(blue). Red atoms are described using quantum mechanics, yellow atoms
using an interatomic potential. At each propagation step, the A bond is
weaker than the corresponding B bond because of a neighbouring under-
coordinated atom (indicated by an arrow for the A1–B1 pair). b, At higher
speed an instability occurs. At this point any slight shear disturbance in the
stress field reverses the relative stability of A and B bonds, and the crack is
deflected onto a (111) plane. The energy release rate for this system is
G 5 6.7 J m22. In addition to the main tensile load, this includes a small
G 5 0.24 J m22 shear contribution to break the symmetry in the y direction.
Both exposed (111) crack surfaces undergo a 2 3 1 reconstruction.
c–e, Photographs from three-point bending experiments6 (reprinted with
permission): (110) fracture surface for low-speed cleavage (grey; c); fracture
surface of a specimen with the crack deflected from the (110) plane (white) to
the (111) plane (black) for intermediate-speed cleavage (d); (111) fracture
surface obtained for high-speed cleavage (e).
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Dynamical instabilities in Si

JR Kermode et. al.  
Nature 455 1224 (2008)

C Gattinoni, JR Kermode and  
A De Vita, In prep (2014) 

Crack-dislocation interactions

A Glazier, G Peralta, JR Kermode, 
A De Vita and D Sherman, Phys. Rev. 
Lett,  112 115501 (2014).

Stress corrosion cracking

Fig  2.  Subcritical  crack  advance  on  Si(110),  catalysed  by  oxygen  (red  atoms).  Left:  the
system  before  chemisorption  of  second  O

2
,  Right:  crack  advance  after  dissociative

adsorption.

Machine-­learning  of  QM  forces
Zhenwei Li’s PhD project has advanced considerably during this reporting period. In this                                   

part of the overall project, we are working to improve the informational efficiency of our                                         

modelling approach, particularly on the idea of building a database of previous QM results                                      

“on-­the-­fly”. By reusing (rather than recalculating) the information stored in the database, it                                   

is in principle possible to dramatically reduce the computational cost of our simulations,                                   

while still retaining our target high (QM) accuracy. With this goal in mind, Zhenwei has                                         

developed an advanced interpolation scheme for QM forces based on Gaussian Process                                

regression, with an accuracy which systematically improves as more data is added to the                                      

database of reference configurations. The scheme has been so far tested both on MD and,                                         

more  stringently,  on  the  phonon  band  structure  of  silicon  [3].

Interaction  between  cracks  and  point  defects
Our project on modelling the interaction between crack propagating on the (111) cleavage                                   

plane in silicon and isolated substitutional boron defects has been concluded, and the                                   

resulting  paper  is  currently  under  peer  review  [4].

Our QM simulations predict three regimes: at low speed we see deflection of cracks in                                         

perfect silicon crystals;; at intermediate speeds, crack deflection occurs at defect sites, at a                                      

rate proportional to the linear defect concentration. At higher speeds the crack-­defect                                

interaction is dynamically hindered, and perfectly smooth fracture surfaces are recovered.                             

These predictions are completely consistent with experimental results obtained by our                             

Screw Edge 
One of the main advantages of LOTF with respect 
to other QM/MM implementations is the possibility 
of updating the quantum region. The Nye tensor is 
useful for tracking and following dislocations cores 
during the dynamics. It is much more reliable at 
high temperature with respect to other tools such 
as Von Mises strain, and it gives extra information 
such as the character of the dislocation (edge or 
screw) and its sign. 
The instantaneous position of the dislocation core, 
given by the maximum of this quantity, defines the 
center of the quantum region during the dynamics.

Shockley Partials

In the picture: dissociation into Shockley 
partials for both edge and screw dislocation 
in the gamma phase.

0.09751

-0.0938

Quadrupole of screw 
dislocations in the 
gamma phase at 700 K. 
The system has 3d 
boundary conditions. 
Atoms coloured by the 
screw component of the 
Nye tensor. 
The dislocation cores 
are easily tracked. 

QM region

buffer

MM region

Predictor/Corrector

 - The quantum forces are fully converged with a 5 
Angstrom buffer (required accuracy below 0.1 eV/Å). 
- The classical EAM forces can be 40% wrong on the 
atoms closest to the dislocation core. 
- The EAM potential is accurate enough ~ 3 Angstrom 
from the core of the dislocation.

QM engine: PBE DFT [2]

MM engine: EAM potential [3]

Preliminary Tests:    Bulk Properties
DFT EAM

3.52 3.52

4.81 4.44

a0(Å)

E0(eV )

�

a0(Å)

E0(eV )

DFT EAM

3.57 3.57

4.93 4.63

�0

Elastic Properties (GPa)

B
C11

C12

C44

177 186
238 237
146 160
114 125 C44

177 154
234 206
149 128
125 107

C12

C11

B

Applications of LOTF to Dislocation Motion
4.1 Bulk and Elastic Properties

Single-crystal nickel-based superalloys are usually made up of two di↵erent
phases: a � phase described by an fcc lattice and an ordered �

0 precipitate
described by a LI2 structure (cubic lattice, Ni3Al stoichiometry with Ni
atoms on the faces of the cube and Al ones on the corners). The conventional
cells of these solid solutions are shown in Figure 4.1.

Figure 4.1: Di↵erent phases of the alloy: � (Ni/fcc) and �
0 (Ni3Al/LI2)

In order to determine the bulk properties of the two structures we have
run di↵erent ab initio simulations for di↵erent values of the lattice parameter
(within a range of ±10% from the experimental one). The resulting energies
are fitted with the Murnaghan equation of state:

E(V ) = E0 +
B0V

B
0
0


1

B
0
0
� 1

✓
V0

V

◆B0
0

+ 1

�
�

B0V0

B
0
0
� 1

(4.1)

where E0 is the cohesive energy of the crystal (minimum value of E), V0 the
equilibrium volume, B the bulk modulus and B

0 its derivative with respect
to pressure. A good convergence of the fitting parameters is achieved for
both the structures with a 300 eV cuto↵ energy. A 13⇥13⇥13 Monkhorst-
Pack grid was used for sampling the BZ in the simple case of a fcc nickel
crystal. The result of the fitting procedure are presented in Figure 4.2, the
values for the parameters are reported in table 4.1, along with the results of
the same procedure for EAM calculations. The agreement between the two
approaches is quite good, but the classical potential is not able to capture
the slight di↵erence between the bulk moduli of the two phases. The classical
potential was later rescaled (E �! �E with � = 1.13) in order to fit the
elastic constants for the � phase. These results are also presented in table
4.1; the bulk moduli are slightly overestimated.
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Good agreement between EAM potential and DFT calculations for bulk and elastic properties.  
It is possible to rescale the classic potential in order to match better DFT results. 

Width of the Buffer

- EAM potential accurate enough. 
- QM calculations are not required at every time-step.  
- Possibility of accelerate the dynamics. 
- Here: 2 fs time-step, 10 fs between each quantum 

calculation 

Ongoing Work and Future Plans
- Studying the diffusion rate of dislocations as a function of temperature to give an estimate to 
the diffusion barrier, repeating the simulation in proximity of a gamma/gamma prime interface 
and studying the effect of the strain due to the lattice mismatch.

0RGHOOLQJ�WKH�,QWHUIDFH��00�

$�VXSHUFHOO�LV�QHHGHG�WR�
DFFRPPRGDWH�WKH�ODWWLFH�
PLVPDWFK��a������EHWZHHQ�
WKH�GLIIHUHQW�SKDVHV�

5HOD[DWLRQ�RI�WKH�V\VWHP�OHDGV�WR�
WKH�IRUPDWLRQ�RI�PLVILW�GLVORFDWLRQ�
�HGJH�W\SH�

:H�ZLOO�IRFXV�RQ�D�UHJLRQ�IDU�
IURP�WKHVH�GHIHFWV��ZKHUH�WKH�
VWUDLQ�GLVWULEXWLRQ�PD\�EH�
DVVXPHG�WR�EH�FRQVWDQW�

Interface between the phases of the alloy. Misfit (edge) dislocations are formed.  
Red box: region far from the core in which the strain distribution is approximately constant 
White box: dislocation core (zoomed in the second picture)

- Studying the interaction between vacancies and dislocation both in the gamma phase and at the 
interface, with particular focus on the climb of edge dislocations.

- Studying the effect of impurities such as rhenium atoms on diffusion properties

10 Å We would like to thank Dr. Alessandro Mottura for useful discussions
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Vacancy diffusion in pure nickel and in proximity of a Rhenium impurity: energy barriers (NEB)

F Bianchini, JRK and A De Vita, Modell. Simul. Mater. Sci. Eng. 24 045012 (2016)

F Bianchini, A Glielmo, JRK and A De Vita 3 043605 Phys. Rev. Mat. (2019)

��0 phasephase

EAM, 5% Al, T = 300 K, 100 MPa shear stress

Misfit  
dislocs

MD simulation of dislocations in ! phase Ni 
• Aleatoric and epistemic uncertainties
• Model uncertainty: how accurate is 

interatomic potential?  
– parameters and functional form

• Random microstructures, limited data
• Algorithmic uncertainty in solvers
• Limited transferability: can we model 

chemical complexity, e.g. impurities?
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Quantifying uncertainties across the scales
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Figure 1: (a) Convergence of QM forces near the core of a dislocation in the � phase at room temperature
(solid lines, for nearest neighbours, blue n.n., and next nearest neighbours, red n.n.n. of the dislocation
core). The dashed lines indicate the percentage error that the EAM potential makes with respect to DFT.
Quantum calculations are only strictly needed for the nearest neighbours of a dislocation core. (b) Atom-
istic model of a quadrupole of screw dislocations in a Ni-based superalloy. Inset: dissociation of one of
the screw dislocations into Shockley partials, which can be tracked by two separate mobile QM regions
(red circles).

2 Project Structure and Resource Management
Key Scientific Goals. The key targets of this project are to study the glide of screw dislocations
in the � phase (initially bulk, then closer to the �/�0 interface), to evaluate the relevant diffusion
mechanisms and barriers, and to study dislocation climb at the �/�0 interface, including the role
played by vacancies in this process. These overall targets can be decomposed into four work
packages:

• WP1 — Dissociation of a Screw Dislocation into Shockley partials. Studying the mod-
ification induced on the system by the usage of quantum precision for the core atoms.
Expected start date March 2014.

• WP2 — Glide of a dislocation in the � phase. Evaluating diffusion barriers for the
dislocation glide as a function of applied shear strain. Expected start date May 2014.

• WP3 — Glide of a dislocation towards the interface. Observing the modification of
these barriers as a function of the distance of dislocations from the �/�0 interface, and
investigating dislocation pinning. Expected start date June 2014.

• WP4 — Dislocation/vacancy interaction at the interface. Analysing the role played by
vacancies in the climb motion of dislocations at the interface. Expected start date October
2014.
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Quantifying uncertainties in electronic structure
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Figure 1: (a) Convergence of QM forces near the core of a dislocation in the � phase at room temperature
(solid lines, for nearest neighbours, blue n.n., and next nearest neighbours, red n.n.n. of the dislocation
core). The dashed lines indicate the percentage error that the EAM potential makes with respect to DFT.
Quantum calculations are only strictly needed for the nearest neighbours of a dislocation core. (b) Atom-
istic model of a quadrupole of screw dislocations in a Ni-based superalloy. Inset: dissociation of one of
the screw dislocations into Shockley partials, which can be tracked by two separate mobile QM regions
(red circles).

2 Project Structure and Resource Management
Key Scientific Goals. The key targets of this project are to study the glide of screw dislocations
in the � phase (initially bulk, then closer to the �/�0 interface), to evaluate the relevant diffusion
mechanisms and barriers, and to study dislocation climb at the �/�0 interface, including the role
played by vacancies in this process. These overall targets can be decomposed into four work
packages:

• WP1 — Dissociation of a Screw Dislocation into Shockley partials. Studying the mod-
ification induced on the system by the usage of quantum precision for the core atoms.
Expected start date March 2014.

• WP2 — Glide of a dislocation in the � phase. Evaluating diffusion barriers for the
dislocation glide as a function of applied shear strain. Expected start date May 2014.

• WP3 — Glide of a dislocation towards the interface. Observing the modification of
these barriers as a function of the distance of dislocations from the �/�0 interface, and
investigating dislocation pinning. Expected start date June 2014.

• WP4 — Dislocation/vacancy interaction at the interface. Analysing the role played by
vacancies in the climb motion of dislocations at the interface. Expected start date October
2014.
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Fig. 1. Marginal likelihood function, Eq. (42), for two observation (t1, t2). The training data t are shown in the picture as a black circle. We also show an 
equiprobability line of the marginal likelihood at a Mahalanobis distance of 1.5 from the origin using the covariance from Eq. (45) with b0/(a0 − 1) chosen 
to maximize the marginal likelihood at t. Left: only noise is contributing to the covariance matrix (α → ∞). The marginal likelihood at t in this case is 
0.033. Right: the covariance matrix includes a finite α = 0.2. The contrition arising from the noise term is shown as a dashed green circle. The marginal 
likelihood at t for this value of alpha is reduced to 0.015. Also shown is the basis vector (cos(π), cos(2π)), which is not aligned with the data t for our 
choice of basis function. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Magnitude of the coefficients obtained using a RVM for the determination of the hyperparameters. The parameters which go to zero have been 
plotted with a smaller symbol to highlight the sparsity of the model.

Therefore, the atomization energy per atom of a system M = AnA BnB . . . is defined as the sum of the energies of the 
individual atoms minus the energy of the system divided by the number of atoms in the system:

Eat = 1
Na

(
∑

I

nI E I − E M

)

, (46)

where Na = ∑
nI is the number of atoms in the supercell and I runs over all the species of atoms, A, B, . . . E I is the energy 

of the isolated atom I and E M is the energy of the system M .
Using the decomposition of the energy defined in Eq. (2), we can write the atomization energy Eat as:

Eat = 1
Na

(
∑

I

nI (Eb
I + Ex

I + Ec
I ) − (Eb

M + Ex
M + Ec

M)

)

(47)

= Eb
at + Ex

at + Ec
at,

where we have defined the partial atomization energies Eα
at = 1

Na

(∑
I nI Eα

I − Eα
M

)
, α = b, x, c. The components Eb

at and Ec
at

are fixed in our model, and, using Eq. (17), Ex
at can be written as

Ex
at = ξ T 1

Na

[
∑

I

nI Ex[ni; ê] − Ex[nM; ê]
]

, (48)

where ni is the electron density of the isolated atom I and nM is the electron density of the system M .

UQ for DFT Exchange Functionals

7

DFT: Exchange-correlation energies

The double integral in the exact exchange makes it much more costly

We chose the meta-GGA framework to build our approximation,

E xc [n] =

Z
n"xc(n(r),rn(r), ⌧(r)) dr

We will focus on exchange energy only,

E xc [n] = E c [n] +

Z
n"x(n(r),rn(r), ⌧(r)) dr
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DFT: Exchange energy

We can transform the dependence on rn(r) and ⌧(r) into two
dimensionless parameters s and ↵:

s =
|rn|

2(3⇡2)1/3n4/3
; ↵ =

⌧ � ⌧W

⌧UEG
,

⌧W = |rn|2 /8n: Weizsäcker kinetic energy density
⌧UEG = 3

10
(3⇡2)2/3n5/3: UEG kinetic energy density

Also, we can group all non-local contributions in the exchange
enhancement factor F x(s,↵),

E x [n] =

Z
n"x(n,rn, ⌧) dr =

Z
n"xUEG (n)F

x(s,↵) dr
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Linear model for the exchange energy

The final exchange enhancement model is

F x(s,↵) =
MsX

i

M↵X

j

⇠xijPi (ts(s))Pj(t↵(↵))

The final exchange energy model is therefore

E x [n; ⇠x ] =
MsX

i

M↵X

j

⇠xij

Z
n"xUEG (n)Pi (ts(s))Pj(t↵(↵)) dr

How to obtain the coe�cients?
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• Linear model for meta-GGA exchange energy

• Assume observed data (experimental atomisation energies, plus energy-volume data) 
t follows proposed model on average, with iid Gaussian observational noise

• Conjugate priors for parameters ξ and β

• Standard Bayesian linear regression gives analytic posterior predictive distrib for  
Use ARD with relevance vector machine to prevent overfitting. 

Ex[n]

Assumptions

The observed data t follow on average our model and have a noise "
(includes model inaccuracy),

ti = (⇠x)TEx [n; ê] + "i

The noise is assumed Gaussian with precision � = 1/v = 1/�2 and
uncorrelated, so that

ti ⇠ N (t | (⇠x)TEx [n; ê],��1)

The likelihood function is, therefore,

L(t | n, ⇠,�) =
NY

i=1

N (ti | ⇠TEx [ni ; ê],�
�1)

We choose conjugate priors for ⇠ and �

Manuel Aldegunde (WCPM) WCPM Seminar Series October 27, 2015 17 / 51

Priors

Incorporate prior beliefs into the model

Depend on extra parameters: hyperparameters

Conjugate priors keep the posterior propability distribution in the
same family as the prior probability distribution

Prior on ⇠: p(⇠ | �,m0,S0) = N (⇠ | m0,��1S0)

Prior on �: p(� | a0, b0) = G(� | a0, b0)
Joint prior: p(⇠,�) = p(⇠ | �)p(�) = N (⇠ | m0,��1S0)G(� | a0, b0)
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Fig. 4. Exchange enhancement factors for the model developed in this work, and a series of other GGA (PBE, PBEsol) and meta-GGA (mBEEF, MS0, MVS and 
TPSS) functionals. The shaded regions correspond to one and two standard deviations around the average model. The left panel shows the projection on s
for α = 1 and the right panel the projection on α for s = 0.

value of α = 1 and as a function of the reduced kinetic energy density α for s = 1. We also include the confidence intervals 
from coming from the distribution of parameters in Eq. (24), and other GGA (PBE and PBEsol) and meta-GGA (mBEEF, MS0, 
MVS [22] and TPSS) functionals.

Remark 10. The flat section around α = 1 in the functional developed in this work, mBEEF and MS0 comes from the 
common α dependence, Eq. (16), in all of them. This property is also shared by the TPSS functional. The use of an α
dependence term without zero slope at α = 1 could allow for more flexibility in the s dependence as shown in [22] for the 
“Made Very Simple” (MVS) functional.

5.1. Numerical results

The training process provided us with a predictive distribution for the exchange contribution to the atomization energy 
of any system outside the training set. For any new system with electron density ñ, the predictive distribution is

p(Ẽx | ñ, t) = St(Ẽx | µ,λ,ν), (54)

with the parameters defined in Eqs. (31)–(33). These equations show that to obtain the parameters of the predictive distri-
bution for the new system, we need the basis exchange energy vector Ex[ñ; ̂e]. As we did for the training of the model, we 
run the simulation self-consistently using the PBE functional and construct the vector Ex[ñ; ̂e] using the resulting density. 
This is then used to calculate the parameters of the Student t-distribution of the exchange energy from Eqs. (31)–(33).

Remark 11. In the training of the model, we used the self-consistent PBE densities, i.e., the densities obtained solving 
Eqs. (3)–(5) with the PBE XC energy functional to evaluate the basis functions (Remark 3). As a posteriori check that this 
is a reasonable approximation, we compare for a few systems the DFT energy using our XC functional with two different 
densities: the self-consistent density obtained using the PBE XC functional as described above, and the self-consistent den-
sity obtained with our trained model. In the first case we run a self-consistent DFT simulation using the PBE functional and 
keep the resulting density, nPBE . This density is then fixed and used to obtain the average prediction of our model running 
a non-self-consistent DFT simulation using Eq. (31) with ñ = nPBE as the exchange energy functional. We will denote this 
energy as Ensc-PBE . In the second case, we run a self-consistent DFT simulation using our average model XC energy, i.e., 
Eq. (18) with ξ given by Eq. (26). We will denote this energy as Esc . We found that the absolute difference between Ensc-PBE
and Esc was below 1 meV, which is lower than the typical energy resolution in DFT applications.

To evaluate the quality of the average predictions and compare it to other values found in the literature, we use the 
mean absolute error (MAE) and the mean absolute relative error (MARE). For a set of calculated data xcalc = {xcalc

i } and the 
corresponding set of experimental data xexp = {xexp

i }, the MAE and MARE of the calculations are defined as:

MAE = 1
N

N∑

i=1

|xcalc
i − xexp

i |, (55)

MARE = 1
N

N∑

i=1

∣∣∣∣∣
xcalc

i − xexp
i

xexp
i

∣∣∣∣∣ . (56)
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Propagating uncertainties to bulk properties
•Nested Monte Carlo – sample model coefficients for Ex from posterior 

distribution, then fit eq. of state to yield distributions of B0 & a0

•Can also include numerical errors, e.g. Gaussian-distributed with std. dev. 10 meV
• Extensible to other QoIs: we also looked at band gaps at KS and G0W0 level

8
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Fig. 7. Box-plot of the (a) equilibrium lattice constants and (b) equilibrium bulk moduli of the elements in the SL20 test set [34]. Experimental lattice 
constants are corrected to static-lattice values subtracting the zero-point anharmonic expansion (ZPAE) and experimental bulk moduli are corrected for the 
zero-point phonon effects (ZPPE).

Fig. 8. Same as Fig. 7 but with an added numerical noise of 10 meV to the regression problem to calculate the SJEOS parameters.
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Fig. 5. Box-plot of the cohesive energies of the elements in the test set. The red squares represent the experimental cohesive energies. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Mean absolute error (in eV) and mean absolute relative error (in %) of the predictions of atomization energies using the average model for the training sets 
containing molecules (G2/97) and solids (EL20).

XC functional Error G2/97-test G2/97 EL20-test EL20

This work MAE 0.116 0.103 0.243 0.0975
MARE 3.27 1.46 8.56 5.62

PBE MAE 0.703 0.238
MARE 5.09 6.88

Fig. 5 shows a box-plot of the distributions of cohesive energies of the elements in the EL20 test set together with the 
experimental values. Except for Fe, all experimental points fall within the confidence interval given by our model. Fe is a 
magnetic material, which is a family not represented in our training set and therefore we can expect that the results for it 
will not be predictive. Also, we must bear in mind that for some magnetic elements the thermal extrapolations to 0 K used 
on the experimental data are no longer valid [7].

Remark 12. As discussed on Section 3.1, the predictions from the model are correlated. As an example of this effect, we 
calculate the uncertainty in the difference between the cohesive energies of K and Ca. The predicted values for both ma-
terials are 1.015 ± 0.165 and 1.945 ± 0.166 eV, respectively. The cohesive energy difference ignoring correlations, i.e., just 
subtracting the two random variables as obtained from Eq. (30), is 0.930 ± 0.234 eV, whereas if we include correlations, i.e., 
subtracting the two correlated variables as obtained from Eq. (37), it is 0.930 ± 0.232 eV. In this case, the difference is very 
small since the model error, which we assumed uncorrelated, dominates over the variability of the coefficients.

Table 1 summarizes the MAE and MARE of the atomization energies of the elements in the EL20 and G2/97 data sets 
and compares them to the ones obtained with the PBE functional. The MAE for the G2/97 data set goes down from 0.703
to 0.103 eV, which was partly expected as the PBE functional does not work particularly well with molecules [4,22]. Fur-
thermore, our results are better than those of BEEF-vdW (0.16 eV, GGA with van de Waals corrections), TPSS (0.28 eV) or 
the hybrid functionals B3LYP (0.14 eV) and PBE0 (0.21 eV) [4]. On the other hand, the performance in our solids data set 
shows very similar results for both functionals.

To further study the predictive capabilities of the functional, we tested it on 37 molecules from the G3-3 subset of the 
G3/99 data set [37]. The MAE and MARE were found to be 0.0608 eV and 0.11%, respectively. Even though it is only half of 
the complete G3-3 set, the MAE is less than half of the best reported in Ref. [4] for the whole data set, including LDA, GGA, 
meta-GGA and hybrid exchange correlation functionals.

5.2. Impact of different correlation functionals

Since the correlation part of the functional is not trained, we tried four different ones to see the impact on the results: 
Ec

PBE , Ec
PBEsol , Ec

vPBE [16,22] and Ec
TPSS . Table 2 shows a comparison of the errors using the three correlations. Even though the 

coefficients selected by the RVM are different, as shown in Fig. 6, the error in the predictions is similar. The vPBE correlation 
seems to give the best results for the molecules in the test set whereas PBEsol is the best for the test set of solids, even 
though both of them are outperformed by the PBE correlation if training solids are also included.

Atomisation energies

Prediction of atomisation energies in the 7 test solids

Error in predictions for solids and molecules

XC functional Error G2/97-test G2/97 EL20-test EL20

This work
MAE 0.116 0.103 0.243 0.0975
MARE 3.27 1.46 8.56 5.62

PBE
MAE 0.703 0.238
MARE 5.09 6.88

Table: Mean absolute error (in eV) and mean absolute relative error (in %)
of the predictions of atomisation energies using the average model for the
training sets containing molecules (G2/97) and solids (EL20).
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Parameterising Hamiltonians from DFT data
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Atomic Cluster Expansion (ACE): R. Drautz, Phys. Rev. B. 99, 014104 (2019)  

Completeness: G. Dusson, M. Bachmayr, G. Csanyi, R. Drautz, S. Etter, C. van der Oord and C. Ortner, arXiv:1911.03550 
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FIG. 2. Block structure and atomic orbital subblocks in the Hamiltonian and overlap matrices used in our models. Each block
within panel (a) is a 14 ⇥ 14 matrix with the atomic orbital structure HIJ shown in panel (b). Blocks coloured green in (a)
are onsite blocks, while those shown in purple are o↵site blocks. Note that the onsite HII are self-adjoint and hence, e.g., only
one of the ps and sp blocks needs to be fitted.

we present a general outline of the ideas, making certain
choices of approximation parameters concrete in §IID.
We denote the parameterised Hamiltonian and overlap

by H̃, S̃. For the sake of simplicity we focus the presen-
tation on H̃ and remark on the relevant modification for
S̃ at the end. Since the focus of the present work is on
elemental metallic systems we ignore chemical species in-
formation entirely. All procedures are straightforward to
generalise for multiple species with the only e↵ect being
an increased number of H̃ and S̃ blocks that have to
be considered as element combinations increase. In the
present case, H̃on is invariant under permutations of RI

and H̃o↵ is invariant under permutations of RIJ . Both
can therefore be parameterised by the ACE model. Here,
we closely follow the procedures introduced by Dusson
et al. 27 , Drautz 35 , Lysogorskiy et al. 38 .
1. Parameterisation of Hon: We start by choosing a

one-particle basis,

�v(x) := �on

nlm
(x) := Pnl(r)Y

m

l
(x̂)fcut(r) (10)

where we have identified the composite index v ⌘ (nlm).
The radial cuto↵ or envelope function fcut(r) ensures that
only interactions of nearby atoms are taken into account,
exploiting the near-sightedness of electronic structure.
Given the one-particle basis we can form the density

projection and projected ⌫-correlations (product basis),

AI

v
:=

X

J 6=I

�v(rIJ), and

A
I

v :=
⌫Y

t=1

AI

vt
for v = (v1, . . . , v⌫), ⌫ = 1, 2, . . . .

The A
I

v form a complete basis of permutation-invariant

polynomials, hence we can approximate

HII = Hon(RI) ⇡ H̃
PI

on
(RI) =

X

v

CvA
I

v, (11)

where A
I

v are scalar and the parameters Cv =
(C↵1↵2

v )Norb
↵1,↵2=1

have the same dimensionality as HII i.e.,
Norb ⇥ Norb (recall that HII denotes the onsite Hamil-
tonian block corresponding to orbitals centered at atom
I). The summation over v will be restricted to a finite
set, the choice of which is a crucial aspect of the model
accuracy; cf. § IID.

The expansion (11) incorporates translation and
permutation invariance but not yet the O(3)-
equivariance (7). Following the general ACE
construction27 we can achieve this by simply aver-
aging the representation over the group O(3), i.e.,

H̃on(RI) = ��
Z

O(3)

D(Q)H̃PI

on
(QRI)D(Q)⇤dQ,

In step 4. we will review how this integration is explicitly
resolved.
2. Parameterisation of Ho↵ : The procedure for pa-

rameterising Ho↵ is similar to that of Hon, the main
di↵erence being that the presence of a bond rather than
a site changes the permutation-invariance. Specifically,
we now need to define one-particle basis functions for the
bond variable and for the environment variables

�b

nlm
(rIJ) = P b

nl
(rIJ)Y

m

l
(r̂IJ)f

b

cut
(rIJ),

�e

nlm
(rIJ,K) = P e

nl
(rIJ,K)Y m

l
(r̂IJ,K)f e

cut
(rIJ,K , rIJ).

(12)

where rIJ = rIJ r̂IJ and rIJ,K := rK � 1

2
(rI + rJ). Note

in particular that the cuto↵ function for the environment,

3

where a = (n, l,m; I) is a composite index, the spatial
electron coordinate x and its components r, ✓, and �
in centrosymmetric coordinates around the atom I are
used. Ylm are spherical harmonics that define the an-
gular dependence, and n = 0, . . . , nmax, l = 0, . . . , lmax,
m = �lmax, . . . , lmax characterize the radial and angu-
lar nodal structure of the atomic orbital. The choice
of Rnl(r) varies between di↵erent types of atomic orbital
basis representations and can involve linear combinations
(contractions) of Gaussian functions or numerically tab-
ulated functions. Here we choose the latter as defined
in the numeric atom-centred orbital (NAO) basis em-
ployed in the FHI-aims code.23 With this definition, we
can express the overlap between basis functions and the
interactions as mediated by the Hamiltonian as follows:

Hab = h�a|Ĥ|�bi and (4)

Sab = h�a|�bi . (5)

Given a crystal-periodic structure R = {L, rI , ZI}I
specified through a set of lattice vectors L=1,2,3, atom
positions rI and chemical species ZI , we must consider
periodic boundary conditions. As such, a Hamiltonian
defined over the whole crystal volume reduces to a block
diagonal Hamiltonian where each block corresponds to a
vector k in reciprocal space, which can be solved via an
independent generalised eigenvalue problem:

H(k) ik = ✏ikS(k) ik i = 1, 2, . . . , (6)

where  ik are Bloch wave functions and H(k) and S(k)
are Hamiltonian and overlap matrices defined in terms
of a discrete crystal-periodic basis. In appendix A, we
show how H(k) and S(k) can be constructed at arbitrary
points k in reciprocal space from real-space representa-
tions of Hamiltonian and overlap matrices that span the
full crystal volume (typically considered within a certain
radius around the central unit cell). As the k-dependent
matrices and the solution of the set of generalised eigen-
values completely follow from the real-space H and S in
(4) and (5), we will go on to develop a representation for
those two matrix quantities as a function of the structure
R.

Recall that Ĥ = � 1

2
r2 + Ve↵ . The e↵ective potential

Ve↵ is not only a function of the spatial electron coordi-
nate x but also of the entire atomic structure, i.e., one
should think of

Ve↵ = Ve↵(x;R).

For example, in KS-DFT, this dependence arises due
to the dependence of Ve↵ on the self-consistent electron
density. Our aim will be to construct a general regres-
sion scheme for the discretised Hamiltonian exploiting
three fundamental, general properties of Ĥ and in par-
ticular Ve↵ : (i) near-sightedness of electronic structure;
(ii) smoothness under changes in the atomic structure;
and (iii) equivariance of the Hamiltonian. We will dis-
cuss in the next section how these properties are to be
exploited in the parameterisation.

In preparation, we first make (iii) more precise: let
Q 2 O(3) denote an isometry (rotation and reflection)
and QR = {L, QrI , ZI}I (where we also rotate the
cell). Further, let HIJ = HIJ(R) denote the Hamilto-
nian block corresponding to interactions between orbitals
centered at sites I and J . It is then straightforward to
deduce that

HIJ(QR) = D(Q)⇤HIJ(R)D(Q), (7)

where D(Q) is a block-Wigner-D matrix,

D(Q) = Diag(Dl1(Q), Dl2(Q), · · · ),

and (l1, l2, . . . ) specify the types of orbitals at each site.
More details can be found in Appendix B.

Crucially, there are only two distinct functional rela-
tionships that must be “learned” in order to represent
the entire Hamiltonian: one for o↵-site blocks that rep-
resent interactions between orbitals centered at two dif-
ferent atoms and one for on-site blocks representing in-
teractions of orbitals at the same atom. More precisely,
the translation invariance and permutation equivariance
of the Hamiltonian imply that

HII = Hon(RI), and

HIJ = Ho↵(rIJ ,RIJ),
(8)

where rIJ = rI�rJ , RI denotes the atomic environment
of atom I andRIJ the bond environment of the (multiple)
bonds between the two atoms i, j. These environments
are defined as follows:

RI :=
�
rIK |K 6= I

 
, and

RIJ :=
�
rK � 1

2
(rI + rJ) |K 6= I, J

 
.

In the above definitions, the index K runs over all unit
cells N within the crystal volume. According to (7) the
functions Hon and Ho↵ are equivariant in the sense that

Hon/o↵(QR) = D(Q)⇤Hon/o↵(R)D(Q). (9)

Translation invariance is now built into the dependence
of Hon/o↵ on relative positions only, while permutation
equivariance of H is built into (8).

Several simplifications apply for the treatment of the
overlap matrix. For each atom we choose a set of basis
functions � that are orthogonal, which means that the
on-site blocks SII are diagonal matrices. The o↵-site
blocks follow the same symmetry as the Hamiltonian o↵-
site blocks.

B. Parameterisation

We parameterise the real-space Hamiltonian and over-
lap matrix blocks Hon,Ho↵ and So↵ using an equivari-
ant ACE basis26,27,35. Similar techniques have previously
been proposed in other contexts32,36,37. In this section,

Blocks of H, S have equivariant structure:

5

f e
cut

, no longer depends only on the radius but may be
more general: we require only that f e

cut
(rIJ,K , rIJ) is

invariant under joint rotation of both arguments which
allows, e.g., ellipsoidal or cylindrical cuto↵ geometries.

The density projection for the bond environment RIJ

is now given by

AIJ

v
:=

X

K 6=I,J

�e

v
(rIJ,K),

and the product basis becomes

A
IJ

v := �b

v0(rIJ) ·
⌫Y

t=1

AIJ

vt ,

for v = (v0, v1, . . . , v⌫), with ⌫ = 0, 1, 2, . . . the corre-
lation order of the bond environment. As in the on-site
case, the AIJ

v form a complete basis of polynomials that
are invariant under permutations of RIJ and we may
therefore approximate

HIJ = Ho↵ ⇡ H̃
PI

o↵
(rIJ ,RIJ) :=

X

v

CvA
IJ

v . (13)

which we finally symmetrize to obtain also the O(3)-
equivariance,

H̃o↵(rIJ ,RIJ) := ��
Z

O(3)

D(Q)H̃PI

o↵
(QrIJ , QRIJ)D(Q)⇤dQ.

(14)
3. Parameterisation of So↵ : The environment-

dependence of Ho↵ enters only through the e↵ective po-
tential Ve↵ which is not present in the overlap matrix
definition. Therefore, we simply parameterise So↵ by

S̃o↵(rIJ) := ��
Z

O(3)

D(Q)

X

v

Cv�
b

v
(QrIJ)

�
D(Q)⇤ dQ.

(15)
This is formally equivalent to a Slater Koster representa-
tion of 2-centre integrals,39 which is exact in the case of
the overlap. For our ACE parameterisation, this means
that we only need to use correlation order ⌫ = 0, i.e. no
environment-dependence of the bond integral needs to be
considered.
4. Recursive symmetrisation: In all three cases

H̃on, H̃o↵ , S̃o↵ we have reduced the parameterisation to
an integral over the symmetry group O(3), i.e.,

K̃(R•) = ��
Z

O(3)

D(Q)

X

v

CvA
•
v(QR•)

�
D(Q)⇤, (16)

where K̃ denotes one of the three model components
H̃on, H̃o↵ , S̃o↵ and R• denotes an atom environment RI

or bond environment RIJ . In particular, for o↵-site over-
lap So↵ ,

A
IJ

v (RIJ) = �b

v
(QrIJ).

Since the angular dependence of the one-particle basis
functions in all cases is in terms of spherical harmonics
Y m

l
we can deduce that

A
•
nlm(QR•) =

X

µ

D
l
µm(Q)A•

nlµ(R•),

where D
l
µm(Q) =

Q
t
Dlt

µtmt
(Q). Furthermore, we write

Cv =
NorbX

↵,�=1

c↵�v E↵� ,

where E↵� 2 RNorb⇥Norb with E↵�

↵0�0 = �↵↵0���0 . Insert-
ing these two identities into (16) yields

K̃(R•) =
X

n,l,m,↵,�

c↵�v
X

µ

U↵�

lµmA
•
nlµ(R•)

=:
X

n,l,m,↵,�

c↵�nlmB↵�

nlm(R•),
(17)

where the “generalized coupling coe�cients” are given by

U↵�

lµm
=

Z

O(3)

D
l
µm(Q)D(Q)⇤E↵�D(Q)dQ.

Their definition involves an integral over products of
Wigner-D matrices which can be precomputed explicitly
(i.e., without need for quadrature which would incur a
discretisation error) using the recursion proposed by Dus-
son et al. 27 and independently by Nigam, Willatt, and
Ceriotti 32 .
Note that (17) parameterises K̃ in terms of the scalar

parameters c↵�v , while the basis functions are now matrix-
valued,

B↵�

nlm(R•) =
X

µ

U↵�

lµmA
•
nlµ(R•).

Since the coupling coe�cients U are extremely sparse,
the operation to obtain B from A

• is relatively cheap.
Due to the coupling, the basis B↵�

nlm is normally over-
complete. This linear dependence arises exactly within
fixed nl blocks. In a straightforward adaption of the
general procedures outlined by Dusson et al. 27 we use
elementary linear algebra techniques to reduce the ba-
sis in a block-by-block fashion by constructing reduced
coupling coe�cients Unl

kµ and defining

Bnlk(R•) :=
X

µ

Unl
kµA

•
nlµ(R•). (18)

In summary, after dropping the detailed multi-index
notation and replacing it with a simple enumeration of
the basis, we obtain linear models for

H̃on := c
on · Bon,

H̃o↵ := c
o↵ · Bo↵ ,

S̃o↵ := c
S · BS,

Symmetrising by integrating over O(3) gives
linear models for each on/offsite block:
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we present a general outline of the ideas, making certain
choices of approximation parameters concrete in §IID.
We denote the parameterised Hamiltonian and overlap

by H̃, S̃. For the sake of simplicity we focus the presen-
tation on H̃ and remark on the relevant modification for
S̃ at the end. Since the focus of the present work is on
elemental metallic systems we ignore chemical species in-
formation entirely. All procedures are straightforward to
generalise for multiple species with the only e↵ect being
an increased number of H̃ and S̃ blocks that have to
be considered as element combinations increase. In the
present case, H̃on is invariant under permutations of RI

and H̃o↵ is invariant under permutations of RIJ . Both
can therefore be parameterised by the ACE model. Here,
we closely follow the procedures introduced by Dusson
et al. 27 , Drautz 35 , Lysogorskiy et al. 38 .
1. Parameterisation of Hon: We start by choosing a

one-particle basis,

�v(x) := �on

nlm
(x) := Pnl(r)Y

m

l
(x̂)fcut(r) (10)

where we have identified the composite index v ⌘ (nlm).
The radial cuto↵ or envelope function fcut(r) ensures that
only interactions of nearby atoms are taken into account,
exploiting the near-sightedness of electronic structure.
Given the one-particle basis we can form the density

projection and projected ⌫-correlations (product basis),

AI

v
:=

X

J 6=I

�v(rIJ), and

A
I

v :=
⌫Y

t=1

AI

vt
for v = (v1, . . . , v⌫), ⌫ = 1, 2, . . . .

The A
I

v form a complete basis of permutation-invariant

polynomials, hence we can approximate

HII = Hon(RI) ⇡ H̃
PI

on
(RI) =

X

v

CvA
I

v, (11)

where A
I

v are scalar and the parameters Cv =
(C↵1↵2

v )Norb
↵1,↵2=1

have the same dimensionality as HII i.e.,
Norb ⇥ Norb (recall that HII denotes the onsite Hamil-
tonian block corresponding to orbitals centered at atom
I). The summation over v will be restricted to a finite
set, the choice of which is a crucial aspect of the model
accuracy; cf. § IID.

The expansion (11) incorporates translation and
permutation invariance but not yet the O(3)-
equivariance (7). Following the general ACE
construction27 we can achieve this by simply aver-
aging the representation over the group O(3), i.e.,

H̃on(RI) = ��
Z

O(3)

D(Q)H̃PI

on
(QRI)D(Q)⇤dQ,

In step 4. we will review how this integration is explicitly
resolved.
2. Parameterisation of Ho↵ : The procedure for pa-

rameterising Ho↵ is similar to that of Hon, the main
di↵erence being that the presence of a bond rather than
a site changes the permutation-invariance. Specifically,
we now need to define one-particle basis functions for the
bond variable and for the environment variables

�b

nlm
(rIJ) = P b

nl
(rIJ)Y

m

l
(r̂IJ)f

b

cut
(rIJ),

�e

nlm
(rIJ,K) = P e

nl
(rIJ,K)Y m

l
(r̂IJ,K)f e

cut
(rIJ,K , rIJ).

(12)

where rIJ = rIJ r̂IJ and rIJ,K := rK � 1

2
(rI + rJ). Note

in particular that the cuto↵ function for the environment,
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we present a general outline of the ideas, making certain
choices of approximation parameters concrete in §IID.
We denote the parameterised Hamiltonian and overlap

by H̃, S̃. For the sake of simplicity we focus the presen-
tation on H̃ and remark on the relevant modification for
S̃ at the end. Since the focus of the present work is on
elemental metallic systems we ignore chemical species in-
formation entirely. All procedures are straightforward to
generalise for multiple species with the only e↵ect being
an increased number of H̃ and S̃ blocks that have to
be considered as element combinations increase. In the
present case, H̃on is invariant under permutations of RI

and H̃o↵ is invariant under permutations of RIJ . Both
can therefore be parameterised by the ACE model. Here,
we closely follow the procedures introduced by Dusson
et al. 27 , Drautz 35 , Lysogorskiy et al. 38 .
1. Parameterisation of Hon: We start by choosing a

one-particle basis,

�v(x) := �on

nlm
(x) := Pnl(r)Y

m

l
(x̂)fcut(r) (10)

where we have identified the composite index v ⌘ (nlm).
The radial cuto↵ or envelope function fcut(r) ensures that
only interactions of nearby atoms are taken into account,
exploiting the near-sightedness of electronic structure.
Given the one-particle basis we can form the density

projection and projected ⌫-correlations (product basis),

AI

v
:=

X

J 6=I

�v(rIJ), and

A
I

v :=
⌫Y

t=1

AI

vt
for v = (v1, . . . , v⌫), ⌫ = 1, 2, . . . .

The A
I

v form a complete basis of permutation-invariant

polynomials, hence we can approximate

HII = Hon(RI) ⇡ H̃
PI

on
(RI) =

X

v

CvA
I

v, (11)

where A
I

v are scalar and the parameters Cv =
(C↵1↵2

v )Norb
↵1,↵2=1

have the same dimensionality as HII i.e.,
Norb ⇥ Norb (recall that HII denotes the onsite Hamil-
tonian block corresponding to orbitals centered at atom
I). The summation over v will be restricted to a finite
set, the choice of which is a crucial aspect of the model
accuracy; cf. § IID.

The expansion (11) incorporates translation and
permutation invariance but not yet the O(3)-
equivariance (7). Following the general ACE
construction27 we can achieve this by simply aver-
aging the representation over the group O(3), i.e.,

H̃on(RI) = ��
Z

O(3)

D(Q)H̃PI

on
(QRI)D(Q)⇤dQ,

In step 4. we will review how this integration is explicitly
resolved.
2. Parameterisation of Ho↵ : The procedure for pa-

rameterising Ho↵ is similar to that of Hon, the main
di↵erence being that the presence of a bond rather than
a site changes the permutation-invariance. Specifically,
we now need to define one-particle basis functions for the
bond variable and for the environment variables

�b

nlm
(rIJ) = P b

nl
(rIJ)Y

m

l
(r̂IJ)f

b

cut
(rIJ),

�e

nlm
(rIJ,K) = P e

nl
(rIJ,K)Y m

l
(r̂IJ,K)f e

cut
(rIJ,K , rIJ).

(12)

where rIJ = rIJ r̂IJ and rIJ,K := rK � 1

2
(rI + rJ). Note

in particular that the cuto↵ function for the environment,
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f e
cut

, no longer depends only on the radius but may be
more general: we require only that f e

cut
(rIJ,K , rIJ) is

invariant under joint rotation of both arguments which
allows, e.g., ellipsoidal or cylindrical cuto↵ geometries.
The density projection for the bond environment RIJ

is now given by

AIJ

v
:=

X

K 6=I,J

�e

v
(rIJ,K),

and the product basis becomes

A
IJ

v := �b

v0(rIJ) ·
⌫Y

t=1

AIJ

vt ,

for v = (v0, v1, . . . , v⌫), with ⌫ = 0, 1, 2, . . . the corre-
lation order of the bond environment. As in the on-site
case, the AIJ

v form a complete basis of polynomials that
are invariant under permutations of RIJ and we may
therefore approximate

HIJ = Ho↵ ⇡ H̃
PI

o↵
(rIJ ,RIJ) :=

X

v

CvA
IJ

v . (13)

which we finally symmetrize to obtain also the O(3)-
equivariance,

H̃o↵(rIJ ,RIJ) := ��
Z

O(3)

D(Q)H̃PI

o↵
(QrIJ , QRIJ)D(Q)⇤dQ.

(14)
3. Parameterisation of So↵ : The environment-

dependence of Ho↵ enters only through the e↵ective po-
tential Ve↵ which is not present in the overlap matrix
definition. Therefore, we simply parameterise So↵ by

S̃o↵(rIJ) := ��
Z

O(3)

D(Q)

X

v

Cv�
b

v
(QrIJ)

�
D(Q)⇤ dQ.

(15)
This is formally equivalent to a Slater Koster representa-
tion of 2-centre integrals,39 which is exact in the case of
the overlap. For our ACE parameterisation, this means
that we only need to use correlation order ⌫ = 0, i.e. no
environment-dependence of the bond integral needs to be
considered.
4. Recursive symmetrisation: In all three cases

H̃on, H̃o↵ , S̃o↵ we have reduced the parameterisation to
an integral over the symmetry group O(3), i.e.,

K̃(R•) = ��
Z

O(3)

D(Q)

X

v

CvA
•
v(QR•)

�
D(Q)⇤, (16)

where K̃ denotes one of the three model components
H̃on, H̃o↵ , S̃o↵ and R• denotes an atom environment RI

or bond environment RIJ . In particular, for o↵-site over-
lap So↵ ,

A
IJ

v (RIJ) = �b

v
(QrIJ).

Since the angular dependence of the one-particle basis
functions in all cases is in terms of spherical harmonics
Y m

l
we can deduce that

A
•
nlm(QR•) =

X

µ

D
l
µm(Q)A•

nlµ(R•),

where D
l
µm(Q) =

Q
t
Dlt

µtmt
(Q). Furthermore, we write

Cv =
NorbX

↵,�=1

c↵�v E↵� ,

where E↵� 2 RNorb⇥Norb with E↵�

↵0�0 = �↵↵0���0 . Insert-
ing these two identities into (16) yields

K̃(R•) =
X

n,l,m,↵,�

c↵�v
X

µ

U↵�

lµmA
•
nlµ(R•)

=:
X

n,l,m,↵,�

c↵�nlmB↵�

nlm(R•),
(17)

where the “generalized coupling coe�cients” are given by

U↵�

lµm
=

Z

O(3)

D
l
µm(Q)D(Q)⇤E↵�D(Q)dQ.

Their definition involves an integral over products of
Wigner-D matrices which can be precomputed explicitly
(i.e., without need for quadrature which would incur a
discretisation error) using the recursion proposed by Dus-
son et al. 27 and independently by Nigam, Willatt, and
Ceriotti 32 .
Note that (17) parameterises K̃ in terms of the scalar

parameters c↵�v , while the basis functions are now matrix-
valued,

B↵�

nlm(R•) =
X

µ

U↵�

lµmA
•
nlµ(R•).

Since the coupling coe�cients U are extremely sparse,
the operation to obtain B from A

• is relatively cheap.
Due to the coupling, the basis B↵�

nlm is normally over-
complete. This linear dependence arises exactly within
fixed nl blocks. In a straightforward adaption of the
general procedures outlined by Dusson et al. 27 we use
elementary linear algebra techniques to reduce the ba-
sis in a block-by-block fashion by constructing reduced
coupling coe�cients Unl

kµ and defining

Bnlk(R•) :=
X

µ

Unl
kµA

•
nlµ(R•). (18)

In summary, after dropping the detailed multi-index
notation and replacing it with a simple enumeration of
the basis, we obtain linear models for

H̃on := c
on · Bon,

H̃o↵ := c
o↵ · Bo↵ ,

S̃o↵ := c
S · BS,
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we present a general outline of the ideas, making certain
choices of approximation parameters concrete in §IID.
We denote the parameterised Hamiltonian and overlap

by H̃, S̃. For the sake of simplicity we focus the presen-
tation on H̃ and remark on the relevant modification for
S̃ at the end. Since the focus of the present work is on
elemental metallic systems we ignore chemical species in-
formation entirely. All procedures are straightforward to
generalise for multiple species with the only e↵ect being
an increased number of H̃ and S̃ blocks that have to
be considered as element combinations increase. In the
present case, H̃on is invariant under permutations of RI

and H̃o↵ is invariant under permutations of RIJ . Both
can therefore be parameterised by the ACE model. Here,
we closely follow the procedures introduced by Dusson
et al. 27 , Drautz 35 , Lysogorskiy et al. 38 .
1. Parameterisation of Hon: We start by choosing a

one-particle basis,

�v(x) := �on

nlm
(x) := Pnl(r)Y

m

l
(x̂)fcut(r) (10)

where we have identified the composite index v ⌘ (nlm).
The radial cuto↵ or envelope function fcut(r) ensures that
only interactions of nearby atoms are taken into account,
exploiting the near-sightedness of electronic structure.
Given the one-particle basis we can form the density

projection and projected ⌫-correlations (product basis),

AI

v
:=

X

J 6=I

�v(rIJ), and

A
I

v :=
⌫Y

t=1

AI

vt
for v = (v1, . . . , v⌫), ⌫ = 1, 2, . . . .

The A
I

v form a complete basis of permutation-invariant

polynomials, hence we can approximate

HII = Hon(RI) ⇡ H̃
PI

on
(RI) =

X

v

CvA
I

v, (11)

where A
I

v are scalar and the parameters Cv =
(C↵1↵2

v )Norb
↵1,↵2=1

have the same dimensionality as HII i.e.,
Norb ⇥ Norb (recall that HII denotes the onsite Hamil-
tonian block corresponding to orbitals centered at atom
I). The summation over v will be restricted to a finite
set, the choice of which is a crucial aspect of the model
accuracy; cf. § IID.

The expansion (11) incorporates translation and
permutation invariance but not yet the O(3)-
equivariance (7). Following the general ACE
construction27 we can achieve this by simply aver-
aging the representation over the group O(3), i.e.,

H̃on(RI) = ��
Z

O(3)

D(Q)H̃PI

on
(QRI)D(Q)⇤dQ,

In step 4. we will review how this integration is explicitly
resolved.
2. Parameterisation of Ho↵ : The procedure for pa-

rameterising Ho↵ is similar to that of Hon, the main
di↵erence being that the presence of a bond rather than
a site changes the permutation-invariance. Specifically,
we now need to define one-particle basis functions for the
bond variable and for the environment variables

�b

nlm
(rIJ) = P b

nl
(rIJ)Y

m

l
(r̂IJ)f

b

cut
(rIJ),

�e

nlm
(rIJ,K) = P e

nl
(rIJ,K)Y m

l
(r̂IJ,K)f e

cut
(rIJ,K , rIJ).

(12)

where rIJ = rIJ r̂IJ and rIJ,K := rK � 1

2
(rI + rJ). Note

in particular that the cuto↵ function for the environment,

3

where a = (n, l,m; I) is a composite index, the spatial
electron coordinate x and its components r, ✓, and �
in centrosymmetric coordinates around the atom I are
used. Ylm are spherical harmonics that define the an-
gular dependence, and n = 0, . . . , nmax, l = 0, . . . , lmax,
m = �lmax, . . . , lmax characterize the radial and angu-
lar nodal structure of the atomic orbital. The choice
of Rnl(r) varies between di↵erent types of atomic orbital
basis representations and can involve linear combinations
(contractions) of Gaussian functions or numerically tab-
ulated functions. Here we choose the latter as defined
in the numeric atom-centred orbital (NAO) basis em-
ployed in the FHI-aims code.23 With this definition, we
can express the overlap between basis functions and the
interactions as mediated by the Hamiltonian as follows:

Hab = h�a|Ĥ|�bi and (4)

Sab = h�a|�bi . (5)

Given a crystal-periodic structure R = {L, rI , ZI}I
specified through a set of lattice vectors L=1,2,3, atom
positions rI and chemical species ZI , we must consider
periodic boundary conditions. As such, a Hamiltonian
defined over the whole crystal volume reduces to a block
diagonal Hamiltonian where each block corresponds to a
vector k in reciprocal space, which can be solved via an
independent generalised eigenvalue problem:

H(k) ik = ✏ikS(k) ik i = 1, 2, . . . , (6)

where  ik are Bloch wave functions and H(k) and S(k)
are Hamiltonian and overlap matrices defined in terms
of a discrete crystal-periodic basis. In appendix A, we
show how H(k) and S(k) can be constructed at arbitrary
points k in reciprocal space from real-space representa-
tions of Hamiltonian and overlap matrices that span the
full crystal volume (typically considered within a certain
radius around the central unit cell). As the k-dependent
matrices and the solution of the set of generalised eigen-
values completely follow from the real-space H and S in
(4) and (5), we will go on to develop a representation for
those two matrix quantities as a function of the structure
R.

Recall that Ĥ = � 1

2
r2 + Ve↵ . The e↵ective potential

Ve↵ is not only a function of the spatial electron coordi-
nate x but also of the entire atomic structure, i.e., one
should think of

Ve↵ = Ve↵(x;R).

For example, in KS-DFT, this dependence arises due
to the dependence of Ve↵ on the self-consistent electron
density. Our aim will be to construct a general regres-
sion scheme for the discretised Hamiltonian exploiting
three fundamental, general properties of Ĥ and in par-
ticular Ve↵ : (i) near-sightedness of electronic structure;
(ii) smoothness under changes in the atomic structure;
and (iii) equivariance of the Hamiltonian. We will dis-
cuss in the next section how these properties are to be
exploited in the parameterisation.

In preparation, we first make (iii) more precise: let
Q 2 O(3) denote an isometry (rotation and reflection)
and QR = {L, QrI , ZI}I (where we also rotate the
cell). Further, let HIJ = HIJ(R) denote the Hamilto-
nian block corresponding to interactions between orbitals
centered at sites I and J . It is then straightforward to
deduce that

HIJ(QR) = D(Q)⇤HIJ(R)D(Q), (7)

where D(Q) is a block-Wigner-D matrix,

D(Q) = Diag(Dl1(Q), Dl2(Q), · · · ),

and (l1, l2, . . . ) specify the types of orbitals at each site.
More details can be found in Appendix B.

Crucially, there are only two distinct functional rela-
tionships that must be “learned” in order to represent
the entire Hamiltonian: one for o↵-site blocks that rep-
resent interactions between orbitals centered at two dif-
ferent atoms and one for on-site blocks representing in-
teractions of orbitals at the same atom. More precisely,
the translation invariance and permutation equivariance
of the Hamiltonian imply that

HII = Hon(RI), and

HIJ = Ho↵(rIJ ,RIJ),
(8)

where rIJ = rI�rJ , RI denotes the atomic environment
of atom I andRIJ the bond environment of the (multiple)
bonds between the two atoms i, j. These environments
are defined as follows:

RI :=
�
rIK |K 6= I

 
, and

RIJ :=
�
rK � 1

2
(rI + rJ) |K 6= I, J

 
.

In the above definitions, the index K runs over all unit
cells N within the crystal volume. According to (7) the
functions Hon and Ho↵ are equivariant in the sense that

Hon/o↵(QR) = D(Q)⇤Hon/o↵(R)D(Q). (9)

Translation invariance is now built into the dependence
of Hon/o↵ on relative positions only, while permutation
equivariance of H is built into (8).

Several simplifications apply for the treatment of the
overlap matrix. For each atom we choose a set of basis
functions � that are orthogonal, which means that the
on-site blocks SII are diagonal matrices. The o↵-site
blocks follow the same symmetry as the Hamiltonian o↵-
site blocks.

B. Parameterisation

We parameterise the real-space Hamiltonian and over-
lap matrix blocks Hon,Ho↵ and So↵ using an equivari-
ant ACE basis26,27,35. Similar techniques have previously
been proposed in other contexts32,36,37. In this section,

Blocks of H, S have equivariant structure:
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, no longer depends only on the radius but may be
more general: we require only that f e

cut
(rIJ,K , rIJ) is

invariant under joint rotation of both arguments which
allows, e.g., ellipsoidal or cylindrical cuto↵ geometries.

The density projection for the bond environment RIJ

is now given by

AIJ

v
:=

X

K 6=I,J

�e

v
(rIJ,K),

and the product basis becomes

A
IJ

v := �b

v0(rIJ) ·
⌫Y

t=1

AIJ

vt ,

for v = (v0, v1, . . . , v⌫), with ⌫ = 0, 1, 2, . . . the corre-
lation order of the bond environment. As in the on-site
case, the AIJ

v form a complete basis of polynomials that
are invariant under permutations of RIJ and we may
therefore approximate

HIJ = Ho↵ ⇡ H̃
PI

o↵
(rIJ ,RIJ) :=

X

v

CvA
IJ

v . (13)

which we finally symmetrize to obtain also the O(3)-
equivariance,

H̃o↵(rIJ ,RIJ) := ��
Z

O(3)

D(Q)H̃PI

o↵
(QrIJ , QRIJ)D(Q)⇤dQ.

(14)
3. Parameterisation of So↵ : The environment-

dependence of Ho↵ enters only through the e↵ective po-
tential Ve↵ which is not present in the overlap matrix
definition. Therefore, we simply parameterise So↵ by

S̃o↵(rIJ) := ��
Z

O(3)

D(Q)

X

v

Cv�
b

v
(QrIJ)

�
D(Q)⇤ dQ.

(15)
This is formally equivalent to a Slater Koster representa-
tion of 2-centre integrals,39 which is exact in the case of
the overlap. For our ACE parameterisation, this means
that we only need to use correlation order ⌫ = 0, i.e. no
environment-dependence of the bond integral needs to be
considered.
4. Recursive symmetrisation: In all three cases

H̃on, H̃o↵ , S̃o↵ we have reduced the parameterisation to
an integral over the symmetry group O(3), i.e.,

K̃(R•) = ��
Z

O(3)

D(Q)

X

v

CvA
•
v(QR•)

�
D(Q)⇤, (16)

where K̃ denotes one of the three model components
H̃on, H̃o↵ , S̃o↵ and R• denotes an atom environment RI

or bond environment RIJ . In particular, for o↵-site over-
lap So↵ ,

A
IJ

v (RIJ) = �b

v
(QrIJ).

Since the angular dependence of the one-particle basis
functions in all cases is in terms of spherical harmonics
Y m

l
we can deduce that

A
•
nlm(QR•) =

X

µ

D
l
µm(Q)A•

nlµ(R•),

where D
l
µm(Q) =

Q
t
Dlt

µtmt
(Q). Furthermore, we write

Cv =
NorbX

↵,�=1

c↵�v E↵� ,

where E↵� 2 RNorb⇥Norb with E↵�

↵0�0 = �↵↵0���0 . Insert-
ing these two identities into (16) yields

K̃(R•) =
X

n,l,m,↵,�

c↵�v
X

µ

U↵�

lµmA
•
nlµ(R•)

=:
X

n,l,m,↵,�

c↵�nlmB↵�

nlm(R•),
(17)

where the “generalized coupling coe�cients” are given by

U↵�

lµm
=

Z

O(3)

D
l
µm(Q)D(Q)⇤E↵�D(Q)dQ.

Their definition involves an integral over products of
Wigner-D matrices which can be precomputed explicitly
(i.e., without need for quadrature which would incur a
discretisation error) using the recursion proposed by Dus-
son et al. 27 and independently by Nigam, Willatt, and
Ceriotti 32 .
Note that (17) parameterises K̃ in terms of the scalar

parameters c↵�v , while the basis functions are now matrix-
valued,

B↵�

nlm(R•) =
X

µ

U↵�

lµmA
•
nlµ(R•).

Since the coupling coe�cients U are extremely sparse,
the operation to obtain B from A

• is relatively cheap.
Due to the coupling, the basis B↵�

nlm is normally over-
complete. This linear dependence arises exactly within
fixed nl blocks. In a straightforward adaption of the
general procedures outlined by Dusson et al. 27 we use
elementary linear algebra techniques to reduce the ba-
sis in a block-by-block fashion by constructing reduced
coupling coe�cients Unl

kµ and defining

Bnlk(R•) :=
X

µ

Unl
kµA

•
nlµ(R•). (18)

In summary, after dropping the detailed multi-index
notation and replacing it with a simple enumeration of
the basis, we obtain linear models for

H̃on := c
on · Bon,

H̃o↵ := c
o↵ · Bo↵ ,

S̃o↵ := c
S · BS,

Symmetrising by integrating over O(3) gives
linear models for each on/offsite block:

4

FIG. 2. Block structure and atomic orbital subblocks in the Hamiltonian and overlap matrices used in our models. Each block
within panel (a) is a 14 ⇥ 14 matrix with the atomic orbital structure HIJ shown in panel (b). Blocks coloured green in (a)
are onsite blocks, while those shown in purple are o↵site blocks. Note that the onsite HII are self-adjoint and hence, e.g., only
one of the ps and sp blocks needs to be fitted.

we present a general outline of the ideas, making certain
choices of approximation parameters concrete in §IID.
We denote the parameterised Hamiltonian and overlap

by H̃, S̃. For the sake of simplicity we focus the presen-
tation on H̃ and remark on the relevant modification for
S̃ at the end. Since the focus of the present work is on
elemental metallic systems we ignore chemical species in-
formation entirely. All procedures are straightforward to
generalise for multiple species with the only e↵ect being
an increased number of H̃ and S̃ blocks that have to
be considered as element combinations increase. In the
present case, H̃on is invariant under permutations of RI

and H̃o↵ is invariant under permutations of RIJ . Both
can therefore be parameterised by the ACE model. Here,
we closely follow the procedures introduced by Dusson
et al. 27 , Drautz 35 , Lysogorskiy et al. 38 .
1. Parameterisation of Hon: We start by choosing a

one-particle basis,

�v(x) := �on

nlm
(x) := Pnl(r)Y

m

l
(x̂)fcut(r) (10)

where we have identified the composite index v ⌘ (nlm).
The radial cuto↵ or envelope function fcut(r) ensures that
only interactions of nearby atoms are taken into account,
exploiting the near-sightedness of electronic structure.
Given the one-particle basis we can form the density

projection and projected ⌫-correlations (product basis),

AI

v
:=

X

J 6=I

�v(rIJ), and

A
I

v :=
⌫Y

t=1

AI

vt
for v = (v1, . . . , v⌫), ⌫ = 1, 2, . . . .

The A
I

v form a complete basis of permutation-invariant

polynomials, hence we can approximate

HII = Hon(RI) ⇡ H̃
PI

on
(RI) =

X

v

CvA
I

v, (11)

where A
I

v are scalar and the parameters Cv =
(C↵1↵2

v )Norb
↵1,↵2=1

have the same dimensionality as HII i.e.,
Norb ⇥ Norb (recall that HII denotes the onsite Hamil-
tonian block corresponding to orbitals centered at atom
I). The summation over v will be restricted to a finite
set, the choice of which is a crucial aspect of the model
accuracy; cf. § IID.

The expansion (11) incorporates translation and
permutation invariance but not yet the O(3)-
equivariance (7). Following the general ACE
construction27 we can achieve this by simply aver-
aging the representation over the group O(3), i.e.,

H̃on(RI) = ��
Z

O(3)

D(Q)H̃PI

on
(QRI)D(Q)⇤dQ,

In step 4. we will review how this integration is explicitly
resolved.
2. Parameterisation of Ho↵ : The procedure for pa-

rameterising Ho↵ is similar to that of Hon, the main
di↵erence being that the presence of a bond rather than
a site changes the permutation-invariance. Specifically,
we now need to define one-particle basis functions for the
bond variable and for the environment variables

�b

nlm
(rIJ) = P b

nl
(rIJ)Y

m

l
(r̂IJ)f

b

cut
(rIJ),

�e

nlm
(rIJ,K) = P e

nl
(rIJ,K)Y m

l
(r̂IJ,K)f e

cut
(rIJ,K , rIJ).

(12)

where rIJ = rIJ r̂IJ and rIJ,K := rK � 1

2
(rI + rJ). Note

in particular that the cuto↵ function for the environment,
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we present a general outline of the ideas, making certain
choices of approximation parameters concrete in §IID.
We denote the parameterised Hamiltonian and overlap

by H̃, S̃. For the sake of simplicity we focus the presen-
tation on H̃ and remark on the relevant modification for
S̃ at the end. Since the focus of the present work is on
elemental metallic systems we ignore chemical species in-
formation entirely. All procedures are straightforward to
generalise for multiple species with the only e↵ect being
an increased number of H̃ and S̃ blocks that have to
be considered as element combinations increase. In the
present case, H̃on is invariant under permutations of RI

and H̃o↵ is invariant under permutations of RIJ . Both
can therefore be parameterised by the ACE model. Here,
we closely follow the procedures introduced by Dusson
et al. 27 , Drautz 35 , Lysogorskiy et al. 38 .
1. Parameterisation of Hon: We start by choosing a

one-particle basis,

�v(x) := �on

nlm
(x) := Pnl(r)Y

m

l
(x̂)fcut(r) (10)

where we have identified the composite index v ⌘ (nlm).
The radial cuto↵ or envelope function fcut(r) ensures that
only interactions of nearby atoms are taken into account,
exploiting the near-sightedness of electronic structure.
Given the one-particle basis we can form the density

projection and projected ⌫-correlations (product basis),

AI

v
:=

X

J 6=I

�v(rIJ), and

A
I

v :=
⌫Y

t=1

AI

vt
for v = (v1, . . . , v⌫), ⌫ = 1, 2, . . . .

The A
I

v form a complete basis of permutation-invariant

polynomials, hence we can approximate

HII = Hon(RI) ⇡ H̃
PI

on
(RI) =

X

v

CvA
I

v, (11)

where A
I

v are scalar and the parameters Cv =
(C↵1↵2

v )Norb
↵1,↵2=1

have the same dimensionality as HII i.e.,
Norb ⇥ Norb (recall that HII denotes the onsite Hamil-
tonian block corresponding to orbitals centered at atom
I). The summation over v will be restricted to a finite
set, the choice of which is a crucial aspect of the model
accuracy; cf. § IID.

The expansion (11) incorporates translation and
permutation invariance but not yet the O(3)-
equivariance (7). Following the general ACE
construction27 we can achieve this by simply aver-
aging the representation over the group O(3), i.e.,

H̃on(RI) = ��
Z

O(3)

D(Q)H̃PI

on
(QRI)D(Q)⇤dQ,

In step 4. we will review how this integration is explicitly
resolved.
2. Parameterisation of Ho↵ : The procedure for pa-

rameterising Ho↵ is similar to that of Hon, the main
di↵erence being that the presence of a bond rather than
a site changes the permutation-invariance. Specifically,
we now need to define one-particle basis functions for the
bond variable and for the environment variables

�b

nlm
(rIJ) = P b

nl
(rIJ)Y

m

l
(r̂IJ)f

b

cut
(rIJ),

�e

nlm
(rIJ,K) = P e

nl
(rIJ,K)Y m

l
(r̂IJ,K)f e

cut
(rIJ,K , rIJ).

(12)

where rIJ = rIJ r̂IJ and rIJ,K := rK � 1

2
(rI + rJ). Note

in particular that the cuto↵ function for the environment,

Represent blocks using ACE basis
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f e
cut

, no longer depends only on the radius but may be
more general: we require only that f e

cut
(rIJ,K , rIJ) is

invariant under joint rotation of both arguments which
allows, e.g., ellipsoidal or cylindrical cuto↵ geometries.
The density projection for the bond environment RIJ

is now given by

AIJ

v
:=

X

K 6=I,J

�e

v
(rIJ,K),

and the product basis becomes

A
IJ

v := �b

v0(rIJ) ·
⌫Y

t=1

AIJ

vt ,

for v = (v0, v1, . . . , v⌫), with ⌫ = 0, 1, 2, . . . the corre-
lation order of the bond environment. As in the on-site
case, the AIJ

v form a complete basis of polynomials that
are invariant under permutations of RIJ and we may
therefore approximate

HIJ = Ho↵ ⇡ H̃
PI

o↵
(rIJ ,RIJ) :=

X

v

CvA
IJ

v . (13)

which we finally symmetrize to obtain also the O(3)-
equivariance,

H̃o↵(rIJ ,RIJ) := ��
Z

O(3)

D(Q)H̃PI

o↵
(QrIJ , QRIJ)D(Q)⇤dQ.

(14)
3. Parameterisation of So↵ : The environment-

dependence of Ho↵ enters only through the e↵ective po-
tential Ve↵ which is not present in the overlap matrix
definition. Therefore, we simply parameterise So↵ by

S̃o↵(rIJ) := ��
Z

O(3)

D(Q)

X

v

Cv�
b

v
(QrIJ)

�
D(Q)⇤ dQ.

(15)
This is formally equivalent to a Slater Koster representa-
tion of 2-centre integrals,39 which is exact in the case of
the overlap. For our ACE parameterisation, this means
that we only need to use correlation order ⌫ = 0, i.e. no
environment-dependence of the bond integral needs to be
considered.
4. Recursive symmetrisation: In all three cases

H̃on, H̃o↵ , S̃o↵ we have reduced the parameterisation to
an integral over the symmetry group O(3), i.e.,

K̃(R•) = ��
Z

O(3)

D(Q)

X

v

CvA
•
v(QR•)

�
D(Q)⇤, (16)

where K̃ denotes one of the three model components
H̃on, H̃o↵ , S̃o↵ and R• denotes an atom environment RI

or bond environment RIJ . In particular, for o↵-site over-
lap So↵ ,

A
IJ

v (RIJ) = �b

v
(QrIJ).

Since the angular dependence of the one-particle basis
functions in all cases is in terms of spherical harmonics
Y m

l
we can deduce that

A
•
nlm(QR•) =

X

µ

D
l
µm(Q)A•

nlµ(R•),

where D
l
µm(Q) =

Q
t
Dlt

µtmt
(Q). Furthermore, we write

Cv =
NorbX

↵,�=1

c↵�v E↵� ,

where E↵� 2 RNorb⇥Norb with E↵�

↵0�0 = �↵↵0���0 . Insert-
ing these two identities into (16) yields

K̃(R•) =
X

n,l,m,↵,�

c↵�v
X

µ

U↵�

lµmA
•
nlµ(R•)

=:
X

n,l,m,↵,�

c↵�nlmB↵�

nlm(R•),
(17)

where the “generalized coupling coe�cients” are given by

U↵�

lµm
=

Z

O(3)

D
l
µm(Q)D(Q)⇤E↵�D(Q)dQ.

Their definition involves an integral over products of
Wigner-D matrices which can be precomputed explicitly
(i.e., without need for quadrature which would incur a
discretisation error) using the recursion proposed by Dus-
son et al. 27 and independently by Nigam, Willatt, and
Ceriotti 32 .
Note that (17) parameterises K̃ in terms of the scalar

parameters c↵�v , while the basis functions are now matrix-
valued,

B↵�

nlm(R•) =
X

µ

U↵�

lµmA
•
nlµ(R•).

Since the coupling coe�cients U are extremely sparse,
the operation to obtain B from A

• is relatively cheap.
Due to the coupling, the basis B↵�

nlm is normally over-
complete. This linear dependence arises exactly within
fixed nl blocks. In a straightforward adaption of the
general procedures outlined by Dusson et al. 27 we use
elementary linear algebra techniques to reduce the ba-
sis in a block-by-block fashion by constructing reduced
coupling coe�cients Unl

kµ and defining

Bnlk(R•) :=
X

µ

Unl
kµA

•
nlµ(R•). (18)

In summary, after dropping the detailed multi-index
notation and replacing it with a simple enumeration of
the basis, we obtain linear models for

H̃on := c
on · Bon,

H̃o↵ := c
o↵ · Bo↵ ,

S̃o↵ := c
S · BS,

Application to Al: trained on 500 K MD for FCC and BCC. 
Can also predict electronic structure along Bain path 
and near vacancies without expanding training set.
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Figure 1: (a) Convergence of QM forces near the core of a dislocation in the � phase at room temperature
(solid lines, for nearest neighbours, blue n.n., and next nearest neighbours, red n.n.n. of the dislocation
core). The dashed lines indicate the percentage error that the EAM potential makes with respect to DFT.
Quantum calculations are only strictly needed for the nearest neighbours of a dislocation core. (b) Atom-
istic model of a quadrupole of screw dislocations in a Ni-based superalloy. Inset: dissociation of one of
the screw dislocations into Shockley partials, which can be tracked by two separate mobile QM regions
(red circles).

2 Project Structure and Resource Management
Key Scientific Goals. The key targets of this project are to study the glide of screw dislocations
in the � phase (initially bulk, then closer to the �/�0 interface), to evaluate the relevant diffusion
mechanisms and barriers, and to study dislocation climb at the �/�0 interface, including the role
played by vacancies in this process. These overall targets can be decomposed into four work
packages:

• WP1 — Dissociation of a Screw Dislocation into Shockley partials. Studying the mod-
ification induced on the system by the usage of quantum precision for the core atoms.
Expected start date March 2014.

• WP2 — Glide of a dislocation in the � phase. Evaluating diffusion barriers for the
dislocation glide as a function of applied shear strain. Expected start date May 2014.

• WP3 — Glide of a dislocation towards the interface. Observing the modification of
these barriers as a function of the distance of dislocations from the �/�0 interface, and
investigating dislocation pinning. Expected start date June 2014.

• WP4 — Dislocation/vacancy interaction at the interface. Analysing the role played by
vacancies in the climb motion of dislocations at the interface. Expected start date October
2014.
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UQ for potentials with Bayesian linear regression

UncertaintyQuantification inAtomistic
Simulationsusing InteratomicPotentials

Iain Best, Tim Sullivan, James Kermode
HetSys CDT, University of Warwick, Coventry, UK

iain.best@warwick.ac.uk

Introduction
• Interatomic potentials (IPs) are widely used in materials modelling and

other disciplines to compute physical quantities of interest (QoIs).
• IP use o�ers vastly reduced simulation time/cost when compared with

ab-initio methods like density functional theory (DFT), allowing access
to otherwise impractical time- and length- scales.

• Since IP use also reduces accuracy and increases uncertainty in QoIs,
we seek a method of calculating statistically meaningful error bars, by
recasting model calibration as a Bayesian inverse problem.

1) Bayesian Inverse Problems
For a model V with coe�cients w, some inputs x, targets y and precision
— on said data, a basic Bayesian inverse problem can be broken into stages;

1. specify prior distribution for coe�cients P(w),
2. calculate likelihood of our model given data

P(y|x, w, —) = N (y|V (w, x), —≠1),
3. from these, form posterior distribution for weights P(w|y).

Once we have P(w|y), we form an ensemble of potentials {Vi}, which we
push through simulations, giving a distribution in the desired QoI.

2) Fixed Form IPs
Consider the fixed form Stillinger-Weber (SW) potential [1] for Si. We
first apply Maximum Entropy [2] priors to the 7 parameters x. Then,
calibrating on a single (and artificial) ‘target’ QoI value with a normal
likelihood, we form the posterior distribution

P(w|y) = P(y|x, w, —)P(w)
P(y) ,

where P(y), the marginal likelihood of observing data y given our model,
we avoid computing by Metropolis-Hastings MCMC to sample P(w|y). We
speed up sampling by training (and validating) a Gaussian Process (GP)
surrogate.

Figure 1: GP surrogate for Evac on a 1000 point Latin hypercube of the 7
parameters w.

Figure 2: Posterior distributions of bulk modulus and vacancy formation
energy for diamond-Si using SW potential. For 95% confidence intervals
we obtain B = 101.32 ± 3.85 GPa and Evac = 4.16 ± 0.64 eV.

While fixed form IPs are conceptually more simple from a physical perspec-
tive, from a UQ perspective they can paradoxically be more challenging.

3) ACE with BLR
We now shift our attention to the
Atomic Cluster Expansion (ACE)
potential [3]; which we view as a lin-
ear model

V ({R}) =
ÿ

i

wi„i({R}).

Taking advantage of Bayesian Lin-
ear Regression (BLR) and choosing
a conjugate prior to our Gaussian
likelihood, can write down our pos-
terior distribution analytically

P(w|y) = N (w|µ, S),
Figure 3: Representative samples
from posterior shown on E-V curve
for Si.

where covariance matrix S = (–I+—�T �)≠1 and mean vector µ = —S�T y
are given in terms of a design matrix �N◊M , with �ij giving the value of
the jth basis function on the ith data point.
The –, — precision hyperparameters, on the weights and data respectively,
are optimised to maximise the (log-) evidence

lnP(y|–, —) = M

2 ln – + N

2 ln — ≠ E(w) ≠ 1
2 ln |S≠1| ≠ N

2 ln 2fi,

E(w) = —

2 ||y + �w||2 ≠ –

2 wT w,

before sampling from P(w|y).

4) ACE: Bulk Modulus of Silicon
To illustrate, we quantify the uncertainty of predictions for the bulk modu-
lus of Si for increasingly complex ACE potentials, trained on the same DFT
data, and compare to a reference DFT calculation not in the training set.
We also show the evidence for each model in order to make comparisons
between them.

Figure 4: A comparison of bulk modulus output distributions for a range
of ACE potentials, with a comparison of model evidence.
We observe a peak in evidence for polynomial degree ??, with result ??,
after which there is a decrease in evidence suggesting over-fitting.
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Prior - distribution over “smooth” functions

Smoothness set by kernel, e.g.
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Gaussian Process regression – GPR
Infer most likely function values given data and prior  
covariance assumptions (typically smoothness) p(parameters|data) ∝

L(data|parameters) p(parameters)

Likelihood Prior

Posterior

k(x, x′ ) = v exp [− 1
2

d

∑
i=1

(xi − x′ i)2

ℓ2
i ]

)[ f*] = k⊤
* [K + σ2

n I]−1 y

=
N

∑
i=1

αi k(xi, x*) where α = (K + σ2
n I )−1y

Var[ f*] = K* − k⊤
* [K + σ2

n I]−1 k*

Gaussian Likelihood, i.e. observations are 

 
Noisy observations condition (update) GP. 
Posterior also GP,  with mean and variance  
at new point 

where                        and

x*

k* = K(x*, X) K* = K(x*, x*)

yi = f(xi) + ϵ where ϵ ∼ &(0, σ2
n)

Black: true function f(x)

Crosses:  noisy observations

Blue: GP mean, 95% confidence interval (2 std. devs)

Orange: samples from prior/posterior
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More details on Iain’s poster - Iain Best, Tim Sullivan and JRK (2022)

Parametric Uncertainty Example: vacancy formation energy 
using Tersoff model for silicon 
 
GP surrogate for parameters  QoI map  
trained with LHC design on ~100 points

Calibration wrt noisy experimental data as a  
Bayesian inverse problems solved via MCMC
Allows ‘sloppy’ parameters to be identified.
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Quantifying Model Form Error
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> 0.005 eV

< 0.001 eV

A. P. Bartok, JRK, N. Bernstein and G. Csanyi, PRX 8, 041048 (2018)

GAP predictive variance – vacancy migration

[k]s = K(ℛi, ℛs)
Vi = σ2

i = K(ℛi, ℛi) − kT(KMM + σ2
e I)−1kGP predictive variance 

(based on energies  
 at sparse points only)

Regularisation  meV/atomσe ≈ 1
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L. Shenoy, A. P. Bartok and JRK (2021) – https://github.com/lakshenoy/PX915_UQ_Lakshmi 

Based on Fe GAP database: D. Dragoni, T. Daff, G. Csányi and N. Marzari, Phys Rev Materials (2018)

GAP uncertainty propagation & posterior samples

Vi = K(ℛi, ℛi) − kT(KMM + σ2
e I)−1k

Ebulk = ∑
i∈bulk

ϵi Esurf = ∑
i∈surf

ϵi

γ = Esurf − Ebulk
2A

Interested in size of error in (100) surface energy in Fe predicted by a 2-body + SOAP GAP model

γDFT = 2.543 J/m2 ⟹ 0.005 J/m2 ≈ 0.2 % error

Vbulk = ∑
i∈bulk

Vi

Attempt 1: Assume independence:

Vγ = Vsurf + Vbulk
2A

Vsurf = ∑
i∈surf

Vi

γGAP = 2.538 ± 0.036 J/m2 ≈ 1.4 % error

Attempt 2:  Assess effects of correlation 
by sampling models from GP posterior 
distribution (500 samples, 2-body+SOAP)
γGAP = 2.538 ± 0.018 J/m2 ≈ 0.7 % error

https://github.com/lakshenoy/PX915_UQ_Lakshmi
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Simplified GPR potential setup: Ar trimers

2

ergy of an Ar trimer configuration is truly a function of
all three atomic positions, and while the interaction is
dominated by pair interactions, the total energy cannot
be exactly decomposed into two-body terms.

B. Gaussian procress regression

We can model any multivariate function f(x) using a
GP. This allows us to define a prior over functions that is
equivalent to a multivariate normal distribution for any
finite realisation of the function on a grid of N⇤ points
X⇤ = [x1,x2, . . . ,xN⇤ ] so that f = [f(xi), i = 1 . . . N⇤],
i.e.

f ⇠ GP(m(x), k(x,x0)) =) f ⇠ N (m(x),K) (1)

where m(x) is a specified mean function (often taken to
be zero), k(x,x0) defines a kernel for the covariance be-
tween function values at input points x and x0 and K is
the resulting covariance matrix for all pairs of inputs, i.e.
Kij = k(xi,xj) for i, j = 1 . . . N .

Consider a set of N noisy observations y =
[y1, y2, . . . yN ] at inputs X = [x1,x2, . . .xN ] which are
assumed to follow the model f(x) on average but con-
taminated with additive Gaussian noise

yi = f(xi) + ✏ where ✏ ⇠ N (0, �2
n
) (2)

where �n is a hyperparameter representing the noise
level. Assuming additive independence, the covariance
matrix for the observations is

cov[y] = Ky = K(X,X) + �2
n
I (3)

Conditioning the prior GP (1) on the data leads to
a new GP representing our updated knowledge of the
function, referred to as the posterior GP. The posterior
GP can be used to compute the predictive mean and
covariance at input points of interest X⇤ analytically19,
with the results given by

f̄(X⇤) = K(X⇤, X)K�1
y

y (4)

cov[f⇤] = K(X⇤, X⇤)�K(X⇤, X)K�1
y

K(X,X⇤) (5)

C. Gaussian approximation potentials

The GAP framework has been developed for the spe-
cific case of modelling an ab initio potential energy sur-
face (PES) using Gaussian process regression (GPR)8,20.
In this framework, the GP inputs x are computed using
descriptors that are invariant to translation, permuta-
tion and rotational symmetries21, and the observations
are the ab initio energies, and often also their derivatives
in the form of forces and stresses. A complication arises
here since we need to infer the decomposition of the total
energy onto individual atoms (since local energies cannot
be directly predicted with ab initio methods)

Consider first a two-body approximation to the total
energy:

E(r) =
X

i<j

V2(rij) (6)

where V2(r) ⇠ GP(0, k2(r, r0)) and rij = |rj � ri| is the
distance between atoms i and j. Since we only have ob-
servations of the total energy, the target data is the sum
of Gaussian Process models. The covariance between the
total energies of two configurations A and B is simply
the sum of the covariance functions for each bond

hEAEBi =
X

ij2A,i0j02B

k2(rij , ri0j0) (7)

In the more general case the required covariances can
be computed by introducing a linear operator L̂ which
maps from the observations y we have to the local atomic
energies y0 through the relation y = L̂Ty0. We refer the
reader to Ref. 20 for a complete discussion of GPR in
the context of interatomic potentials, which for realistic
potentials also requires the use of a sparse GP to reduce
the O(N3) cost of training; this step neglected here for
simplicity.
In this work, we use a two-body potential which is

a combination of explicit basis functions and a non-
parameteric term, and a fully non-parameteric three-
body potential. The total energy is of the form

E(r) = E0 +
X

i<j

V2(rij) +
X

i<j<k

V3(rij , rik, rjk) (8)

where E0 is the average energy per atom across the train-
ing set. We note care must be taken to enforce permuta-
tion symmetry for the three-body term, either by sym-
metrising the descriptor or by summing the term over the
permutation group of three particles; here, we take the
former approach.
The elements of the symmetrised three-body descriptor

d = [d1, d2, d3] are defined as d1 = rij + rik, d2 = (rij �
rik)2 and d3 = rjk, which ensures invariance to rigid
rotations and translations as well as swapping the indices
of j and k, while providing a bijective mapping between
atomic coordinates and the descriptor elements.

D. Explicit basis functions

By analogy with the Kennedy–O’Hagan approach,22

simple models that encode known physics such as short-
range repulsion can be used as a baseline; this has been
explored already in GAP models in deterministic settings
(e.g. to add van der Waals corrections23) but the contri-
butions made by uncertainty in the basis functions have
not previously been included in predictions.
For the two- and three-body GPs, we use

V2(r) = f2(r) + hT (r)� (9)

f2(r) ⇠ GP (0, k(r, r0)) (10)

V3(r) ⇠ GP (0, k3(r, r
0)) (11)

Dataset: 1921 CCSD(T) Ar dimers and trimers 
Low-data limit: 1% train, 99% test
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This corresponds to the usual zero-mean GP for the
three-body term, but a non-zero mean for the two-body
term which is made up of a linear combination of basis
functions h(r) = [h1(r), h2(r), . . .] with weights �.

Following O’Hagan 24 , if we adopt a Gaussian prior on
the weights �, so that � ⇠ N (b, B) we can integrate
out the weights rather than optimising them. This yields
another GP for V2(r)

V2(r) ⇠ GP
�
h(r)Tb, k2(r, r

0) + h(r)TBx(r0)
�

(12)

Note that, while the mean of the new GP is simply equal
to the product of the mean coe�cients and the fixed basis
functions, there is also a contribution to the covariance
caused by the uncertainty in the coe�cients. Taking the
limit of an uninformative prior B�1 ! 0 gives results for
the predictive mean and covariance which extend (4) and
(5) to

V̄2(X⇤) = f̄2(X⇤) +RT �̄ (13)

cov[V⇤
2] = cov[f⇤2 ] +RT (HK�1

y
HT )�1R) (14)

where the design matrix H = [h(r1),h(r2), . . .] collects
the basis vectors for all training cases, and H⇤ the same
for all test cases, R = H⇤ � HK�1

y
K⇤ and the limiting

�̄ = (HK�1
y

HT )�1K�1
y

y.

E. Basis functions and covariance kernels

It remains to specify the basis functions and covariance
kernels selected in this study. Since atomic interactions
in Ar are largely dominated by van der Waals dispersion,
which is attractive, and repulsion due to the Pauli exclu-
sion principle, we chose basis functions taken from the
Lennard-Jones potential, i.e.

h1(r) =
1

r12
(15)

h2(r) =
1

r6
(16)

For both terms we chose squared-exponential (SE) co-
variance kernels of the forms

k2(r, r
0) = �22 exp


|r � r0|2

`2

�
(17)

k3(d,d
0) = �23 exp

"
3X

i=1

|di � d0
i
|2

(`i3)
2

#
(18)

with the inputs r, r and lengthscale hyperparameters
✓2,✓3 are scalars and three-vectors for the two-body and
three-body case, respectively, and the signal variances
�2 and �3 are both scalars, giving a total of 7 hyperpa-
rameters including the likelihood noise �n in (3), which
we collect into a vector ✓ = [�2, `2, �3, `13, `

2
3, `

3
3,�n]. The

cuto↵ distances for the two- and three-body terms were
fixed at 7 Å and 5 Å, respectively.

F. Hyperparameter optimisation

For the Bayesian interpretation of a kernel model to be
meaningful, attention must be paid to the choice of hy-
perparameters ✓. Up until now these have often been set
heuristically by MLIP practitioners for reasons of sim-
plicity and computational expediency. In this work, ker-
nel hyperparameters are optimised by maximising either
the marginal likelihood (ML), which has previously been
reported to improve predicted variances for GP-based
interatomic potentials.15,16, and the leave-one-out cross
validation (LOO-CV) likelihood, which has the advan-
tage that it does not depend on the validity of modelling
assumptions.

The marginal likelihood is the probability of the ob-
served data given the inputs, and can be computed by
integrating the likelihood multiplied by the prior (i.e.
marginalising over the function values f)), leading to

p(y|X,✓) =

Z
p(y|f , X,✓)p(f |X,✓)df (19)

For a zero mean GP the prior and likelihood are both
Gaussian, so integral is analytic and yields

log p(y|X,✓) = �1

2
yTK�1

y
y � 1

2
log |Ky|�

N

2
log 2⇡,

(20)
which is simply the PDF of the observations y ⇠
N (0,Ky). The three terms can be interpreted as a data
fit term, a complexity penalty and a normalisation con-
stant, respectively. For the explicit basis in the limit of
a non-informative prior on the basis coe�cients � this
result becomes

log p(y|X,✓) = �1

2
yTK�1

y
y +

1

2
yTCy � 1

2
log |A| (21)

� 1

2
log |Ky|�

N �M

2
log 2⇡

where A = HK�1
y

HT , C = K�1
y

HTA�1HK�1
y

and M is
the rank of HT .19

The LOO-CV approach is based on the idea of leaving
out each piece of training data in turn. The predictive
log probability of the data when leaving out training case
i is

log p(yi|X,y�i,✓) = �1

2
log �2

i
� (yi � µi)2

2�2
i

� 1

2
log 2⇡

(22)
where y�i means all observations except for number i,
and the predictive mean µi and variance �2

i
are given

by (13) and (14) using reduced training sets {X�i,y�i}.
From this result we can write down the LOO log predic-
tive probability as

LLOO(X,y,✓) =
NX

i=1

log p(yi|X,y�i,✓) (23)

This can be computed e�ciently by noting that we re-
quire a series of inverses of the full Ky, each with a row
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Note that, while the mean of the new GP is simply equal
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E. Basis functions and covariance kernels

It remains to specify the basis functions and covariance
kernels selected in this study. Since atomic interactions
in Ar are largely dominated by van der Waals dispersion,
which is attractive, and repulsion due to the Pauli exclu-
sion principle, we chose basis functions taken from the
Lennard-Jones potential, i.e.

h1(r) =
1

r12
(15)

h2(r) =
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(16)
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with the inputs r, r and lengthscale hyperparameters
✓2,✓3 are scalars and three-vectors for the two-body and
three-body case, respectively, and the signal variances
�2 and �3 are both scalars, giving a total of 7 hyperpa-
rameters including the likelihood noise �n in (3), which
we collect into a vector ✓ = [�2, `2, �3, `13, `
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3, `

3
3,�n]. The

cuto↵ distances for the two- and three-body terms were
fixed at 7 Å and 5 Å, respectively.

F. Hyperparameter optimisation

For the Bayesian interpretation of a kernel model to be
meaningful, attention must be paid to the choice of hy-
perparameters ✓. Up until now these have often been set
heuristically by MLIP practitioners for reasons of sim-
plicity and computational expediency. In this work, ker-
nel hyperparameters are optimised by maximising either
the marginal likelihood (ML), which has previously been
reported to improve predicted variances for GP-based
interatomic potentials.15,16, and the leave-one-out cross
validation (LOO-CV) likelihood, which has the advan-
tage that it does not depend on the validity of modelling
assumptions.

The marginal likelihood is the probability of the ob-
served data given the inputs, and can be computed by
integrating the likelihood multiplied by the prior (i.e.
marginalising over the function values f)), leading to

p(y|X,✓) =

Z
p(y|f , X,✓)p(f |X,✓)df (19)

For a zero mean GP the prior and likelihood are both
Gaussian, so integral is analytic and yields
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N
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which is simply the PDF of the observations y ⇠
N (0,Ky). The three terms can be interpreted as a data
fit term, a complexity penalty and a normalisation con-
stant, respectively. For the explicit basis in the limit of
a non-informative prior on the basis coe�cients � this
result becomes

log p(y|X,✓) = �1

2
yTK�1

y
y +

1

2
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2
log |A| (21)

� 1

2
log |Ky|�

N �M

2
log 2⇡

where A = HK�1
y

HT , C = K�1
y

HTA�1HK�1
y

and M is
the rank of HT .19

The LOO-CV approach is based on the idea of leaving
out each piece of training data in turn. The predictive
log probability of the data when leaving out training case
i is

log p(yi|X,y�i,✓) = �1

2
log �2

i
� (yi � µi)2

2�2
i

� 1

2
log 2⇡

(22)
where y�i means all observations except for number i,
and the predictive mean µi and variance �2

i
are given

by (13) and (14) using reduced training sets {X�i,y�i}.
From this result we can write down the LOO log predic-
tive probability as

LLOO(X,y,✓) =
NX

i=1

log p(yi|X,y�i,✓) (23)

This can be computed e�ciently by noting that we re-
quire a series of inverses of the full Ky, each with a row

LJ-like basis set 2- and 3-body SE kernels
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which is simply the PDF of the observations y ⇠
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The LOO-CV approach is based on the idea of leaving
out each piece of training data in turn. The predictive
log probability of the data when leaving out training case
i is
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where y�i means all observations except for number i,
and the predictive mean µi and variance �2

i
are given

by (13) and (14) using reduced training sets {X�i,y�i}.
From this result we can write down the LOO log predic-
tive probability as

LLOO(X,y,✓) =
NX

i=1

log p(yi|X,y�i,✓) (23)

This can be computed e�ciently by noting that we re-
quire a series of inverses of the full Ky, each with a row

β ∼ &(b, B)Prior for coefficients
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D. Explicit basis functions

By analogy with the Kennedy–O’Hagan approach,22

simple models that encode known physics such as short-
range repulsion can be used as a baseline; this has been
explored already in GAP models in deterministic settings
(e.g. to add van der Waals corrections23) but the contri-
butions made by uncertainty in the basis functions have
not previously been included in predictions.

For the two- and three-body GPs, we use

V2(r) = f2(r) + hT (r)� (9)

f2(r) ⇠ GP (0, k(r, r0)) (10)

V3(r) ⇠ GP (0, k3(r, r
0)) (11)

Include explicit basis set contrib in 2-body

Ei = &(E(r), σ2
n)Gaussian Likelihood

Even for simple model have 7-dim. hyperspace
θ = [δ2, ℓ2, δ3, ℓ1

3 , ℓ2
3 , ℓ3

3 , σn

3

This corresponds to the usual zero-mean GP for the
three-body term, but a non-zero mean for the two-body
term which is made up of a linear combination of basis
functions h(r) = [h1(r), h2(r), . . .] with weights �.

Following O’Hagan 24 , if we adopt a Gaussian prior on
the weights �, so that � ⇠ N (b, B) we can integrate
out the weights rather than optimising them. This yields
another GP for V2(r)

V2(r) ⇠ GP
�
h(r)Tb, k2(r, r

0) + h(r)TBx(r0)
�

(12)

Note that, while the mean of the new GP is simply equal
to the product of the mean coe�cients and the fixed basis
functions, there is also a contribution to the covariance
caused by the uncertainty in the coe�cients. Taking the
limit of an uninformative prior B�1 ! 0 gives results for
the predictive mean and covariance which extend (4) and
(5) to

V̄2(X⇤) = f̄2(X⇤) +RT �̄ (13)

cov[V⇤
2] = cov[f⇤2 ] +RT (HK�1

y
HT )�1R) (14)

where the design matrix H = [h(r1),h(r2), . . .] collects
the basis vectors for all training cases, and H⇤ the same
for all test cases, R = H⇤ � HK�1

y
K⇤ and the limiting

�̄ = (HK�1
y

HT )�1K�1
y

y.

E. Basis functions and covariance kernels

It remains to specify the basis functions and covariance
kernels selected in this study. Since atomic interactions
in Ar are largely dominated by van der Waals dispersion,
which is attractive, and repulsion due to the Pauli exclu-
sion principle, we chose basis functions taken from the
Lennard-Jones potential, i.e.

h1(r) =
1

r12
(15)

h2(r) =
1

r6
(16)

For both terms we chose squared-exponential (SE) co-
variance kernels of the forms

k2(r, r
0) = �22 exp


|r � r0|2

`2

�
(17)

k3(d,d
0) = �23 exp

"
3X

i=1

|di � d0
i
|2

(`i3)
2

#
(18)

with the inputs r, r and lengthscale hyperparameters
✓2,✓3 are scalars and three-vectors for the two-body and
three-body case, respectively, and the signal variances
�2 and �3 are both scalars, giving a total of 7 hyperpa-
rameters including the likelihood noise �n in (3), which
we collect into a vector ✓ = [�2, `2, �3, `13, `

2
3, `

3
3,�n]. The

cuto↵ distances for the two- and three-body terms were
fixed at 7 Å and 5 Å, respectively.

F. Hyperparameter optimisation

For the Bayesian interpretation of a kernel model to be
meaningful, attention must be paid to the choice of hy-
perparameters ✓. Up until now these have often been set
heuristically by MLIP practitioners for reasons of sim-
plicity and computational expediency. In this work, ker-
nel hyperparameters are optimised by maximising either
the marginal likelihood (ML), which has previously been
reported to improve predicted variances for GP-based
interatomic potentials.15,16, and the leave-one-out cross
validation (LOO-CV) likelihood, which has the advan-
tage that it does not depend on the validity of modelling
assumptions.
The marginal likelihood is the probability of the ob-

served data given the inputs, and can be computed by
integrating the likelihood multiplied by the prior (i.e.
marginalising over the function values f)), leading to

p(y|X,✓) =

Z
p(y|f , X,✓)p(f |X,✓)df (19)

For a zero mean GP the prior and likelihood are both
Gaussian, so integral is analytic and yields

log p(y|X,✓) = �1

2
yTK�1

y
y � 1

2
log |Ky|�

N

2
log 2⇡,

(20)
which is simply the PDF of the observations y ⇠
N (0,Ky). The three terms can be interpreted as a data
fit term, a complexity penalty and a normalisation con-
stant, respectively. For the explicit basis in the limit of
a non-informative prior on the basis coe�cients � this
result becomes

log p(y|X,✓) = �1

2
yTK�1

y
y +

1

2
yTCy � 1

2
log |A| (21)

� 1

2
log |Ky|�

N �M

2
log 2⇡

where A = HK�1
y

HT , C = K�1
y

HTA�1HK�1
y

and M is
the rank of HT .19

The LOO-CV approach is based on the idea of leaving
out each piece of training data in turn. The predictive
log probability of the data when leaving out training case
i is

log p(yi|X,y�i,✓) = �1

2
log �2

i
� (yi � µi)2

2�2
i

� 1

2
log 2⇡

(22)
where y�i means all observations except for number i,
and the predictive mean µi and variance �2

i
are given

by (13) and (14) using reduced training sets {X�i,y�i}.
From this result we can write down the LOO log predic-
tive probability as

LLOO(X,y,✓) =
NX

i=1

log p(yi|X,y�i,✓) (23)

This can be computed e�ciently by noting that we re-
quire a series of inverses of the full Ky, each with a row

Take vague prior limit 
obtain predictive mean and cov, indpt. of 

B−1 → 0
b

Design matrix   
 and 

H = [h(r1), h(r2), …]
R = H* − HK−1

y K* β̄ = (HK−1
y HT)− 1K−1

y y
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(i) Standard GAP heuristics for hyperparameters

A.P. Bartok and JRK arXiv:2206.08744 (2022)
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(ii) Optimise hyperparameters to maximise marginal likelihood

<latexit sha1_base64="aTy6+m0nqFR8mc1PgS/pI+Wxdg8="></latexit>

L(X,y, ✓) = log p(y|X,✓) = �1

2
yTK�1

y y +
1

2
yTCy � 1

2
log |A|� 1

2
log |Ky|�

N �M

2
log 2⇡
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<latexit sha1_base64="W8bVgq/SPjJTVnd2OAdz/GJKPVc="></latexit>

LLOO(X,y,✓) =
NX

i=1

log p(yi|X,y�i,✓)

(iii) Optimise hyperparameters to maximise LOO-CV likelihood

A.P. Bartok and JRK arXiv:2206.08744 (2022)



22

Summary and Open Questions
• Statistical UQ methods promise to improve error estimates from data-driven models

• But we risk conflating epistemic (missing data/physics) and aleatoric (random) errors 
(cf. discussion group on combining numerical and statistical approaches)

• Gaussian likelihood appealing for practical reasons, but is it realistic for interatomic 
potential model form errors? Possible remedies:

• Including explicit basis functions and their contributions to uncertainty

• Improved description of model discrepancy (à la Kennedy-O’Hagan)

• Gaussian  Student-t likelihood distribution

• Gaussian process regression predictive variance sensitive to hyperparameter choices:

•Optimising marginal likelihood doesn’t always improve calibration of prediction 
errors - perhaps because it relies on model assumptions being correct 

•Optimising LOO-CV likelihood is independent of model assumptions

• Ideally MCMC over hypers sampled from suitable priors (or approx inf:  VI, LFI)

→

www.warwick.ac.uk/jrkermode
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