
GPAW, GPUs, and LUMIGPAW, GPUs, and LUMI
Martti Louhivuori, CSC - IT Center for Science
 Jussi Enkovaara

GPAW 2021: Users and Developers Meeting, 2021-06-01

OutlineOutline

LUMI supercomputer
Brief history of GPAW with GPUs
GPUs and DFT
Current status
Roadmap

Pre-exascale system with AMD
CPUs and GPUs

~ 550 Pflop/s performance
Half of the resources dedicated to
consortium members

Finland, Belgium, Czechia,
Denmark, Estonia, Iceland,
Norway, Poland, Sweden, and
Switzerland

Programming for LUMI
MPI between nodes / GPUs
HIP and OpenMP for GPUs
how to use Python with AMD
GPUs?

LUMI - EuroHPC system of the NorthLUMI - EuroHPC system of the North

https://www.lumi-supercomputer.eu

https://www.lumi-supercomputer.eu/

GPAW and GPUs: history (1/2)GPAW and GPUs: history (1/2)

Early proof-of-concept implementation for NVIDIA GPUs in 2012
ground state DFT and real-time TD-DFT with finite-difference basis
separate version for RPA with plane-waves
Hakala et al. in "Electronic Structure Calculations on Graphics Processing
Units", Wiley (2016),

PyCUDA, cuBLAS, cuFFT, custom CUDA kernels
Promising performance with factor of 4-8 speedup in best cases (CPU
node vs. GPU node)

https://doi.org/10.1002/9781118670712

https://doi.org/10.1002/9781118670712

GPAW and GPUs: history (2/2)GPAW and GPUs: history (2/2)

Code base diverged from the main branch quite a bit
proof-of-concept implementation had lots of quick and dirty hacks
fixes and features were pulled from other branches and patches
no proper unit tests for GPU functionality
active development stopped soon after publications

Before development re-started, code didn't even work anymore on
modern GPUs without applying a few small patches
Lesson learned: try to always get new functionality to the main
development branch!

GPUs are extremely parallel
processors with a limited
instruction set

single core is not that fast, but
there is a lot of them
thousands of threads needed for
good utilisation
streamlined for number crunching

Direct communication between
GPUs is possible with some MPI
implementations

GPU needs a host CPU
computations are offloaded
from CPU to GPU
data needs to be transferred
between the memories

What is a GPU?What is a GPU?

GPUs and DFT codes (1/2)GPUs and DFT codes (1/2)

At some system sizes, most algorithms in DFT become dominated by
dense linear algebra (orthonormalisation, dense matrix diagonalisation,
subspace rotation) ⇒ well suited for GPUs
Transfer of data between CPUs and GPUs can easily become a bottleneck
if not all computations are done on the GPUs

it may be useful to run even "inefficient" parts on the GPUs to avoid data
transfers

GPUs and DFT codes (2/2)GPUs and DFT codes (2/2)

Most major DFT code packages start to have some GPU support
may be limited to specific features
VASP, CP2K, Abinit, Quantum Espresso, FHI-Aims, BigDFT, ...
BerkeleyGW as Gordon Bell finalist in 2020

GW calculation of excited states of silicon divacancy, 2742 atoms and
10968 electrons using the whole Summit supercomputer (Oak Ridge,
~4600 nodes each with 2x Power9 + 6x V100 GPUs)

GPAW, re-booted GPU version
ground state DFT (and real-time TD-DFT?) with finite-difference basis
ported to be based on 21.1.0

https://cs.lbl.gov/news-media/news/2020/crdnersc-led-paper-a-gordon-bell-finalist-at-sc20/

https://cs.lbl.gov/news-media/news/2020/crdnersc-led-paper-a-gordon-bell-finalist-at-sc20/

GPAW/cuda: What's under the hood?GPAW/cuda: What's under the hood?

CUDA kernels for many operations
GPU algorithms implemented in C / Python
Python interfaces to external GPU libraries

On the Python side, pyCUDA is used to store and access data on the GPU
offers a (limited) Numpy-like array interface

GPAW/cuda: CUDA kernelsGPAW/cuda: CUDA kernels

Stencil operations: interpolate, restrict, relax, FD
different stencil sizes (3..11), different GPU HW (Fermi, Kepler)

Other grid operations: cut, paste, paste+zero, translate
Elementwise operations:

axpbyz, axpbz, fill, xypz, ax2py, negation
vectorised version of axpy, scal, ax2py, xypz

Localized functions: add, integrate (reduce)
TD-DFT: addition of linear fields

GPAW/cuda: PythonGPAW/cuda: Python

Generic GPU stuff
device management: init, set device
array container: GPUArray

Python interfaces to CUDA kernels
grid operations: cut, paste, interpolate, restrict, relax, FD
localized functions: add, integrate
elementwise operations

including multi-block axpy, scal, dotu, dotc
TD-DFT: addition of linear fields

Python interfaces to cuBLAS
BLAS (cuBLAS): scal, gemm, gemv, axpy, syrk/herk, syr2k/her2k, dotc, dotu
hybrid BLAS (cuBLAS): gemm, syrk, syr2k

GPU implementationGPU implementation
stencil operations:

interpolate, restrict, relax, FD
multi-GPU parallelization:

k-points, spins, domain
decomposition
domain decomposition: sync and
async boundary exchange

TD-DFT using the same CUDA
kernels etc.

Performance enhancementsPerformance enhancements
batching:

small grids combined into larger
blocks
used in stencil operations and in
several BLAS functions

hybrid BLAS level 3 functions:
GEMM, SYRK, SYR2K
calculation decomposed to both
GPU and CPU

GPAW/cuda: OverviewGPAW/cuda: Overview

CPU CPU (2x20 Xeon Gold 6230)(2x20 Xeon Gold 6230)

nodes C6-6-10 Cu71 C60Pb Si702

1 104.721 3050.768 - -

2 76.875 1559.466 - -

4 42.748 932.713 - -

8 28.149 640.163 327.936 1702.476

16 - - 206.629 1017.338

20 - - 205.711 871.564

ground state DFT, FD
C6-6-10: carbon nanotube
Cu71: copper filament
C60Pb: fullerenes & lead surface
Si702: silicon cluster

GPU GPU (4x V100)(4x V100)

nodes C6-6-10 Cu71 C60Pb Si702

1 66.022 - - -

2 42.295 755.803 - -

4 29.084 390.078 - -

8 20.909 221.431 127.906 553.859

16 - - 82.942 322.553

20 - - 74.374 278.861

GPU vs. CPUGPU vs. CPU

C6-6-10 Cu71 C60Pb Si702

speed-up ~1.5x ~2.5x ~2.5x ~3x

GPAW/cuda: Non-optimised performance on PuhtiGPAW/cuda: Non-optimised performance on Puhti

https://github.com/mlouhivu/gpaw-benchmarks/

https://github.com/mlouhivu/gpaw-benchmarks/

GPAW/cuda: Challenges and warts (1/2)GPAW/cuda: Challenges and warts (1/2)

1. Not all arrays are allocated on the GPU
unnecessary(?) synchronisations between GPUs and CPUs

operations on mixed CPU and GPU arrays
algorithms that use Numpy features that are not supported by pyCUDA

ugly passing of cuda parameter to decide if an array should be allocated
on the GPU or the CPU side

nice for flexibility, though!
solution: allocate all (or at least most) arrays on the GPU?
solution: switch to (or implement) a better GPU array interface

GPAW/cuda: Challenges and warts (2/2)GPAW/cuda: Challenges and warts (2/2)

2. Add-on nature of the design
GPU algorithms are used as an alternative to CPU ones
lot of checking and branching to call the correct functions
solution: deeper integration, e.g. a common GPAW array wrapper that
transparently handles Numpy and GPUArray arrays and CPU/GPU
functions

3. Lack of proper testing
⇒ try something new: things go boom!

4. No support for non-NVIDIA GPUs

Roadmap (1/2)Roadmap (1/2)

Clean integration with the CPU code (WIP)Clean integration with the CPU code (WIP)
clean up and document code
enable one to run the same code either on CPUs or GPUs
CPU code path should be identical to master

https://gitlab.com/gpaw/gpaw/-/merge_requests/580

https://gitlab.com/gpaw/gpaw/-/merge_requests/580

HIP supportHIP support
HIPify CUDA kernels
change to a GPU array interface
that supports both CUDA and HIP

or implement a very light-weight
interface to manually allocated
GPU memory
e.g. cupy has experimental HIP
support

change from cuBLAS to hipBLAS

Extend functionalityExtend functionality
new modes: PW, LCAO
new eigensolvers: Davidson, CG
...

Roadmap (2/2)Roadmap (2/2)

Thanks!Thanks!

