GPAW, GPUs, and LUMI

Martti Louhivuori, CSC - IT Center for Science
Jussi Enkovaara

GPAW 2021: Users and Developers Meeting, 2021-06-01

N
Yo
O)), = -~

CSC - Finnish expertise in ICT for research, education and public administration

Outline

o | UMI supercomputer

e Brief history of GPAW with GPUs
e GPUs and DFT

e Current status

e Roadmap

LUMI - EuroHPC system of the North

e Pre-exascale system with AMD

CPUs and GPUs

o ~ 550 Pflop/s performance [

e Half of the resources dedicated to

consortium members

o Finland, Belgium, Czechia,
Denmark, Estonia, Iceland,
Norway, Poland, Sweden, and
Switzerland

e Programming for LUMI
o MPI between nodes / GPUs
o HIP and OpenMP for GPUs
o how to use Python with AMD
GPUs?

https://www.lumi-supercomputer.eu

https://www.lumi-supercomputer.eu/

GPAW and GPUs: history (1/2)

e Early proof-of-concept implementation for NVIDIA GPUs in 2012
o ground state DFT and real-time TD-DFT with finite-difference basis
o separate version for RPA with plane-waves
o Hakala et al. in "Electronic Structure Calculations on Graphics Processing
Units"”, Wiley (201 6), https://doi.org/10.1002/9781118670712

e PyCUDA, cuBLAS, cuFFT, custom CUDA kernels
e Promising performance with factor of 4-8 speedup in best cases (CPU
node vs. GPU node)

https://doi.org/10.1002/9781118670712

GPAW and GPUs: history (2/2)

e Code base diverged from the main branch quite a bit
o proof-of-concept implementation had lots of quick and dirty hacks
o fixes and features were pulled from other branches and patches
© no proper unit tests for GPU functionality
o active development stopped soon after publications

e Before development re-started, code didn't even work anymore on
modern GPUs without applying a few small patches

e Lesson learned: try to always get new functionality to the main
development branch!

What is a GPU?

e GPUs are extremely parallel
processors with a limited
Instruction set

Core Core Core Core

o single core is not that fast, but ¢
there is a lot of them
o thousands of threads needed for GPU memory
good utilisation e GPU needs a host CPU
o streamlined for number crunching O chputatiQns are offloaded
e Direct communication between from CPU to GPU
GPUs is possible with some MPI > data needs to be transferred

implementations between the memories

GPUs and DFT codes (1/2)

e At some system sizes, most algorithms ir

dense linear algebra (orthonormalisatior

DFT become dominated by
, dense matrix diagonalisation,

subspace rotation) = well suited for GPUs
e Transfer of data between CPUs and GPUs can easily become a bottleneck

if not all computations are done on the GPUSs

o it may be useful to run even "inefficient” parts on the GPUs to avoid data
transfers

GPUs and DFT codes (2/2)

e Most major DFT code packages start to have some GPU support
o may be limited to specific features
o VASP, CP2K, Abinit, Quantum Espresso, FHI-Aims, BigDFT, ...

o BerkeleyGW as Gordon Bell finalist in 2020

o GW calculation of excited states of silicon divacancy, 2742 atoms and
10968 electrons using the whole Summit supercomputer (Oak Ridge,
~4600 nodes each with 2x Power9 + 6x V100 GPUs)

https://cs.Ibl.gov/news-media/news/2020/crdnersc-led-paper-a-gordon-bell-finalist-at-sc20/

e GPAW, re-booted GPU version
o ground state DFT (and real-time TD-DFT?) with finite-difference basis
o ported to be based on 21.1.0

https://cs.lbl.gov/news-media/news/2020/crdnersc-led-paper-a-gordon-bell-finalist-at-sc20/

GPAW/cuda: What's under the hood?

e CUDA kernels for many operations
e GPU algorithms implemented in C / Python
e Python interfaces to external GPU libraries

e On the Python side, pyCUDA is used to store and access data on the GPU
o offers a (limited) Numpy-like array interface

GPAW/cuda: CUDA kernels

e Stencil operations: interpolate, restrict, relax, FD
o different stencil sizes (3..11), different GPU HW (Fermi, Kepler)
e Other grid operations: cut, paste, paste+zero, translate
e Elementwise operations:
o axpbyz, axpbz, fill, xypz, ax2py, negation
o vectorised version of axpy, scal, ax2py, xypz
e Localized functions: add, integrate (reduce)

e TD-DFT: addition of linear fields

GPAW/cuda: Python

e Generic GPU stuff

o device management: init, set device
o array container: GPUArray

e Python interfaces to CUDA kernels
o grid operations: cut, paste, interpolate, restrict, relax, FD
o localized functions: add, integrate

o elementwise operations
o including multi-block axpy, scal, dotu, dotc

o TD-DFT: addition of linear fields
e Python interfaces to cuBLAS

o BLAS (cuBLAS): scal, gemm, gemv, axpy, syrk/herk, syr2k/her2k, dotc, dotu
o hybrid BLAS (cuBLAS): gemm, syrk, syr2k

GPAW/cuda: Overview

GPU implementation

e stencil operations:
o interpolate, restrict, relax, FD
e multi-GPU parallelization:
o k-points, spins, domain
decomposition
o domain decomposition: sync and
async boundary exchange

e TD-DFT using the same CUDA
kernels etc.

Performance enhancements

e patching:

O sMa
bloc

| grids combined into larger

KS

o used in stencil operations and in
several BLAS functions

e hybrid BLAS level 3 functions:
o GEMM, SYRK, SYR2K

o calculation decomposed to both
GPU and CPU

Cs5C

GPAW/cuda: Non-optimised performance on Puhti

CPU (2x20 Xeon Gold 6230) GPU (4x Vv100)
nodes C6-6-10 Cu71 C60Pb Si702 nodes C6-6-10 Cu71 C60Pb Si702
1 104.721 3050.768 - - 1 66.022 - - -
2 76.875 1559.466 - - 2 42.295 755.803 - -
4 42.748 932.713 - - 4 29.084 390.0/8 - -
3 28.149 640.163 327.936 1702.476 3 20.909 221.431 127.906 553.859
16 - - 206.629 1017.338 16 - - 82.942 322.553
20 - - 205.711 871.564 20 - - 74.374 278.861
e ground state DFT, FD GPU vs. CPU
o C6-6-10: carbon nanotube
© Cu71: copper filament C6-6-10 Cu71 C60Pb Si702

o C60PDb: fullerenes & lead surface
o Si702: silicon cluster
o https://github.com/mlouhivu/gpaw-benchmarks/

speed-up ~1.5x ~2.5x ~2.5x ~3x

https://github.com/mlouhivu/gpaw-benchmarks/

GPAW/cuda: Challenges and warts (1/2)

1. Not all arrays are allocated on the GPU

e unnecessary(?) synchronisations between GPUs and CPUs

o operations on mixed CPU and GPU arrays
o algorithms that use Numpy features that are not supported by pyCUDA

e ugly passing of cuda parameter to decide if an array should be allocated

on the GPU or the CPU side
o nice for flexibility, though!
e solution: allocate all (or at least most) arrays on the GPU?

e solution: switch to (or implement) a better GPU array interface

GPAW/cuda: Challenges and warts (2/2)

2. Add-on nature of the design
e GPU algorithms are used as an alternative to CPU ones
e |ot of checking and branching to call the correct functions
e solution: deeper integration, e.g. a common GPAW array wrapper that
transparently handles Numpy and GPUArray arrays and CPU/GPU
functions

3. Lack of proper testing
= try something new: things go boom!
4. No support for non-NVIDIA GPUs

Roadmap (1/2)

Clean integration with the CPU code (WIP)

e clean up and document code
e enable one to run the same code either on CPUs or GPUs
e CPU code path should be identical to master

https://qgitlab.com/gpaw/gpaw/-/merge_requests/580

https://gitlab.com/gpaw/gpaw/-/merge_requests/580

Roadmap (2/2)

HIP support Extend functionality
e HIPify CUDA kernels e new modes: PW, LCAO
e change to a GPU array interface e new eigensolvers: Davidson, CG

that supports both CUDA and HIP e .
o or implement a very light-weight
interface to manually allocated
GPU memory
o e.g. cupy has experimental HIP
support

e change from cuBLAS to hipBLAS

Thanks!

