
JOBFLOW-REMOTE

GUIDO PETRETTO

AUTOMATED AB INITIO WORKFLOWS WITH JOBFLOW AND ATOMATE2 - CECAM SCHOOL

LAUSANNE, MARCH 17, 2025 – MARCH 20, 2025

© MATGENIX, 2025

PLAN OF THE TALK

 Overview

 Job execution process

 Interacting with jobflow-remote

 Dealing with failures

 Configure jobflow-remote

 Fine tuning job execution

© MATGENIX, 2025

OVERVIEW

© MATGENIX, 2025

JOBFLOW VS JOBFLOW-REMOTE

Workflow definition

 Job and Flow objects

 Maker

 Outputs ➞ JobStore

 Connections

 Composition

Workflow execution

 Jobs and Flows in a DB

 Jobs and Flows state evolution

 Workers

 Submitting jobs

© MATGENIX, 2025

A WORKFLOW ENGINE

Common Workflow Language

Workflow libraries

Workflow engines

 Referred in previous presentations as a workflow engine

 Alternative to the run_locally()of the previous tutorials

your_workflows

© MATGENIX, 2025

TURBOMOLE

workflows

run_locally()

WHY JOBFLOW-REMOTE?

Why a new manager for jobflow?

 Tailored to jobflow

 Full features support

 Better integration

 JSON serialization

 Overlapping functionalities between Fireworks and Jobflow

 workflow definition

 Request from a customer:

 Internal DB cannot be accessed from the HPC centre

 Only outbound connections

© MATGENIX, 2025

JOBFLOW-REMOTE PACKAGE

© MATGENIX, 2025

 Github repository: https://github.com/Matgenix/jobflow-remote

 Documentation: https://matgenix.github.io/jobflow-remote

 Forum: https://matsci.org/jobflow

 Open source

 License: modified BSD (3-clause BSD)

https://github.com/Matgenix/jobflow-remote
https://matgenix.github.io/jobflow-remote
https://matsci.org/jobflow

MAIN FEATURES

 Manage the state of Jobs and Flows

 Job execution does not need access to the DB

 Daemon process orchestrating Jobs execution

 Handles multiple “workers” (supercomputer, local execution, supercomputer frontend, …)

 Retries, restarts (with fail-safe mechanisms)

 Extensive command line interface (CLI)

 programmatic API

 Optional multiple projects

 Batch submission

 Possible parallel Jobs execution

 Connection with OTP

 GUI

 Integration tests: real
MongoDB and queueing
systems with docker
containers

HIGH LEVEL

Run
queue

① The user adds a
workflow to the list of
calculations to be
performed

© MATGENIX, 2025

HIGH LEVEL

Run
queue

② Calculations are
submitted to a
supercomputer

© MATGENIX, 2025

HIGH LEVEL

③ Results are brought
back by the runner, …

© MATGENIX, 2025

HIGH LEVEL

③ Results are brought
back by the runner, …

and inserted into the
database

Job
Store

Database containing the standardized
outputs of the calculations

© MATGENIX, 2025

HIGH LEVEL
④ The user can access
the results from the work
station/virtual machine
and perform analysis,
visualizations, …

Job
Store

© MATGENIX, 2025

Database containing the standardized
outputs of the calculations

REMOTE EXECUTION

© MATGENIX, 2025

CONNECTIONS SCHEMA

The machine hosting the system that orchestrates the
execution connects to

 Storage

 Workers

And should be accessible from the user

CONNECTIONS SCHEMA – MORE ACCURATE

The machine hosting the system that orchestrates the
execution connects to

 Database

 JobStore

 Workers

And should be accessible from the user

DATA DISTRIBUTION

2 distinct storing locations:

 Queue: Job and Flow status

 Defined for jobflow-remote

 Strictly MongoDB

 Output: Job outputs

 Jobflow’s JobStore

 A Maggma Store

Queue and Output can be the same MongoDB
database but contain different kind of data.

Use different collections

CREATE A FLOW

Create a Jobflow Flow object:

 As in standard Jobflow

 Jobs, Flows and Makers can be used

© MATGENIX, 2025

from jobflow import job, Flow

from jobflow_remote.testing import add

j1 = add(1, 2)

j2 = add(j1.output, 3)

flow = Flow([j1, j2])

Note: the “add” Job is imported from a package.

FLOW IN THE QUEUE

Insert flow

© MATGENIX, 2025

Use the submit_flow function from
jobflow-remote

The Job inputs are stored as JSON

from jobflow_remote import submit_flow

output = submit_flow(flow)

print(output)

READYJob state

Caution: the flow is not in the HPC
queue at this stage

Note: A db_id is added as unique
identifier in the DB. In output

THE RUNNER

The Runner is the key element making the Job state evolve

 Daemon process(es) handling the whole execution of the jobflow workflows

 Runs in the background

 Keeps working in parallel on all the jobs that are not completed

 Possibly attempts the same action again in case of failure

 Started and monitored with the CLI

© MATGENIX, 2025

FLOW IN THE QUEUE

Checkout Job

© MATGENIX, 2025

 The runner acknowledges the
presence of a READY Job

 Only the state of the Job is updated

CHECKED_OUTJob state

UPLOAD

Upload Job

© MATGENIX, 2025

 Fetch the JSON serialized
representation of the Job

 Resolve references

 Upload a JSON file to the selected
worker

 Target is a folder determined by the
job UUID

UPLOADEDJob state

Note: when running an external
code (e.g. VASP), it is not the input
file of the code that is uploaded

SUBMIT TO HPC

Submit Job

© MATGENIX, 2025

 Create a submission script in the
execution folder of the Job

 Submit to the system queue (e.g.
SLURM, PBS, …)

SUBMITTEDJob state

CHECK STATUS HPC

Check status

© MATGENIX, 2025

 Runner regularly check the status
of the Job submitted to the HPC
queue.

 When the Job starts, the status is
switched to RUNNING

 Job object is deserialized and
executed like a normal Jobflow Job

RUNNINGJob state

CHECK STATUS HPC

Check status

© MATGENIX, 2025

 Runner regularly check the status
of the Job submitted to the HPC
queue.

 When the Job is finished, the status
is switched to TERMINATED

TERMINATEDJob state

TERMINATED means just that the
job in the queue has stopped
running. No implication on errors

Name will likely change to
EXECUTED

DOWNLOAD OUTPUTS

Download
outputs

© MATGENIX, 2025

 Before finishing Job writes the
output to a file-based JobStore on
the worker

 Runner download to the local
machine:

 File-based JobStore

 Execution information (e.g. timings,
errors, …)

DOWNLOADEDJob state

NO ERRORS

Complete Job

© MATGENIX, 2025

If no errors during Job execution

 Jobs execution information in the
Queue store

 Job outputs inserted in the actual
JobStore

COMPLETEDJob state

ANALYZE RESULTS

Insert flow

© MATGENIX, 2025

Retrieve Outputs from JobStore to
analyze, plot data, …

The outputs in JobStore are the same
as in standard Jobflow execution

COMPLETEDJob state

JOB ERRORS

First category of errors: Job failure

 Job raises an exception during execution

 Several potential causes:

 Bad inputs

 External code does not complete successfully

 External code fails

 Bug in the Job code

 Python code running Jobflow on the worker is not killed

 Job state FAILED

© MATGENIX, 2025

WITH ERRORS

Complete Job

© MATGENIX, 2025

If errors during Job execution

 Job execution information has been
downloaded

 Jobs execution information in the
Queue store

 Including errors messages

 No data in JobStore

FAILEDJob state

Note: FAILED means error during
Job execution (the Runner
procedure was executed correctly)

RUNNER ERRORS

Second category of errors: Runner execution error

 The runner fails while performing one of the actions

 Several potential causes:

 Connection issues (worker, JobStore)

 HPC queueing system errors

 Queued job unexpectedly killed

 Queued job reached walltime

 …

 The Runner attempts the action multiple times (exponential backoff)

 Job state REMOTE_ERROR

© MATGENIX, 2025

UPLOAD

Upload Job

© MATGENIX, 2025

 Fetch the JSON serialized
representation of the Job

 Upload of the JSON file to the
worker fails due to connection issue

 After failing multiple times, the Job
is set to the REMOTE_ERROR state

REMOTE_ERRORJob state

Note: REMOTE_ERROR is
independent from Job successful
execution

STATES EVOLUTION RECAP

© MATGENIX, 2025

 All possible states evolutions during
Runner execution

 WAITING state: a Job wating for outputs
from a previous Job not yet completed

 Will switch to READY when all
previous Jobs are completed.

INTERACTING WITH JOBFLOW-REMOTE

© MATGENIX, 2025

COMMAND LINE INTERFACE

CLI is the main entry point for interacting with
jobflow-remote

 jf command

 Several commands and subcommands

 Tree representation

 Interfaces with the different projects

© MATGENIX, 2025

CLI --HELP

Every command has a --help/-h option for details and list of options

© MATGENIX, 2025

CLI OVERVIEW

Several main level functionalities:

 admin: handle the queue DB

 project: manage projects
configurations

 runner: control the Runner

 job: query and control the Jobs in
the queue DB

 flow: query and control the Flows
in the queue DB

 backup: import/export backup

 batch: monitor batch jobs

 gui: start the GUI

© MATGENIX, 2025

CLI - PROJECT

project: manage projects
configurations

 List of current projects

 Check the connections to workers
and databases

© MATGENIX, 2025

CLI - RUNNER

runner: control the Runner

 Start

 Stop

 Status

 Subprocesses information

 Kill

© MATGENIX, 2025

CLI -JOB

job: query and control the
Jobs in the queue DB

 List Jobs

 Several filtering options

 State, ids, names,…

 -v verbosity option

 Detailed information

 Act on jobs

 Rerun/retry

 Set properties

 Report

© MATGENIX, 2025

CLI - JOB

job: query and control the
Jobs in the queue DB

 List Jobs

 Several filtering options

 State, ids, names,…

 -v verbosity option

 Detailed information

 Act on jobs

 Rerun/retry

 Set properties

 Report

© MATGENIX, 2025

CLI - JOB

job: query and control the
Jobs in the queue DB

 List Jobs

 Several filtering options

 State, ids, names,…

 -v verbosity option

 Detailed information

 Act on jobs

 Rerun/retry

 Set properties

 Report

© MATGENIX, 2025

CLI - FLOW

flow: query and control the
Flows in the queue DB

 List Flows

 Several filtering options

 State, ids, names,…

 -v verbosity option

 Detailed information

 Delete Flows

 Report

 Graph

© MATGENIX, 2025

CLI - FLOW

flow: query and control the
Flows in the queue DB

 List Flows

 Several filtering options

 State, ids, names,…

 -v verbosity option

 Detailed information

 Delete Flows

 Report

 Graph

© MATGENIX, 2025

PYTHON API

Most of the functionalities exposed in the CLI are matched by objects and
functions to perform the same actions from python.

 JobController: interactions with the queue DB

 DaemonManager: manage the Runner daemonized process

 ConfigManager: manage projects and their content

© MATGENIX, 2025

ACCESS TO OUTPUT RESULTS

© MATGENIX, 2024

 Based on the standard Jobflow’s JobStore

 Same content and approach

 Access the correct JobStore based on the project

 get_jobstore from jobflow-remote

GUI
Experimental GUI based on FastHTML

 Runner

 Jobs/Flows

 List

 Info

 Control

 Delete

 Report

© MATGENIX, 2025

https://fastht.ml/

DEALING WITH ERRORS

© MATGENIX, 2025

ERRORS

Two categories of errors:

 Job raises an exception during execution

 Bad inputs

 External code does not complete successfully

 …

 The runner fails while performing one of the actions

 Connection issues (worker, JobStore)

 HPC queueing system errors

 …

© MATGENIX, 2025

FAILED

REMOTE_ERROR

FAILED - ERROR INFORMATION

Where to look for information about errors?

 jf job info <JOB_ID>: “error” keyword

 Files on in the worker:

 run_dir

 Queueing system files

 queue.out, queue.err

 External code outputs

© MATGENIX, 2025

FAILED

FAILED - FIX

No general recipe for fixing failures

 Temporary issue: rerun = Job back to READY state

 Wrong inputs:

 Change inputs and rerun

 Resubmit a new flow (delete the previous one)

 Bug in the code:

 Fix and resubmit flow

© MATGENIX, 2025

FAILED

REMOTE_ERROR - ERROR INFORMATION

Where to look for information about errors?

 jf job info <JOB_ID>: “error.queue” keyword

 Files on in the worker:

 run_dir

 Queueing system files

 queue.out, queue.err

 Missing jfremote outputs

 Runner logs

 ~/.jfremote/PROJ_NAME/log

© MATGENIX, 2025

REMOTE_ERROR

REMOTE_ERROR - FIX

No general recipe for fixing failures

 Temporary issue: retry = try again the same remote action (e.g. job back to UPLOADED)

 Wrong resources:

 Updates resources (CLI or python API) and retry

 Wrong connection configuration:

 Fix config and retry

 …

 If problems from previous steps are involved: full rerun

© MATGENIX, 2025

REMOTE_ERROR

RERUN/RETRY SCHEMA

 rerun = Job back to READY state

 retry = try again the same remote action
(e.g. job back to UPLOADED,
TERMINATED, …)

© MATGENIX, 2025

CONFIGURATION

© MATGENIX, 2025

POSSIBLE CONFIGURATIONS

 All-in-one

 Running completely on the cluster

 User-Workstation

 A workstation hosting the daemon
and used for user interactions

 Full split

 Workstation for the daemon and
separate system for user
interaction

© MATGENIX, 2025

WARNING: The same python environment should be
present on all the machines

POSSIBLE CONFIGURATIONS

 All-in-one

 Running completely on the cluster

 User-Workstation

 A workstation hosting the daemon
and used for user interactions

 Full split

 Workstation for the daemon and
separate system for user
interaction

© MATGENIX, 2025

WARNING: The same python environment should be
present on all the machines

PROJECTS

© MATGENIX, 2025

A project:

 The set of configurations defining DBs and workers

 Defined in a file (yaml, json, toml)

 Associated with a single JobStore and Queue

 Preferably bound to a single python environment (avoid incompatibilities)

 Has its own runner

MULTIPLE PROJECTS

© MATGENIX, 2025

Why multiple project?

 Separate research project

 Separate results

 Run independently from other projects

 Different python packages

CREATE A PROJECT

© MATGENIX, 2025

CREATE A PROJECT

© MATGENIX, 2025

example_tutorial.yaml:

Generate a minimal configuration file to fill in

JOBSTORE

© MATGENIX, 2025

Same format as standard Jobflow, but not from jobflow.yaml

QUEUE STORE

© MATGENIX, 2025

 Same format as standard jobflow for
maggma store

 Must be a “mongo-like” Store with an
underlying real MongoDB

 Can be the same database as
JobStore, but different collection

WORKERS

© MATGENIX, 2025

Define the workers executing the jobs

 type

 remote: SSH connection

 Provide connection details

 local: same machine as the Runner

 scheduler_type

 shell: executed as a script in the shell

 slurm/pbs/…: queueing system

 work_dir: folder of execution of jobs

 pre_run: commands added to the
submission script

EXECUTION CONFIGURATION

© MATGENIX, 2025

A list of configuration options to be
added to the submission script on the
worker

Can set:

 Modules to be loaded

 Environmental variables

 Pre_run/post_run: commands
before/after the job execution

Needs to be passed to the Job when
submitting.

SELECTING A PROJECT

© MATGENIX, 2025

 If only one project no need to specify it

 Python API: project argument

 CLI

 -p argument to jf. Applied to the single command

 Export jfremote_project environment variable. Applied to all commands.

Not jf job list –p example_tutorial

TUNING JOB EXECUTION

© MATGENIX, 2025

HOW TO TUNE THE EXECUTION OF THE JOB

© MATGENIX, 2025

 Execution configuration

 See previous slides

 Can be set:

 at submission level

 using a powerup

 Resources (e.g. slurm-related)

 Worker name

 Number of cores, memory, partition…

 Can be set:

 at worker level

 at submission level

 using a powerup

EXECUTION CONFIGS

© MATGENIX, 2025

At submission

Use the name of one defined in the configuration

Or you can directly pass an exec_config dictionary:

SETTING RESOURCES AT SUBMISSION LEVEL

© MATGENIX, 2025

Or you can directly pass a specific dictionary:

Then it is slurm/pbs/…-specific

SETTING RESOURCES AT WORKER LEVEL

© MATGENIX, 2025

Resources

THE SUBMIT_FLOW FUNCTION

© MATGENIX, 2024

USING A POWERUP

© MATGENIX, 2024

SETTING RESOURCES WITH CLI

© MATGENIX, 2025

Modify resources after job has been submitted with submit_flow

Only for READY Jobs to ensure not yet submitted to the HPC queue

CLI: jf job set resources

BACKEND DETAILS

© MATGENIX, 2025

QUEUE DB STRUCTURE

 Job documents collection

 Flow documents collection

 Auxiliary collection (unique index, …)

JobDoc

 Job as_dict

 Uuid

 Index

 Db_id: unique id

 State

 Parents (uuid)

 Errors

 Run info (remote, dates, resources,…)

FlowDoc

 Flow uuid

 Jobs ids (uuid, db_id, index)

 Job connections

 State

© MATGENIX, 2025

 Jobs cannot be executed directly

 HPC infrastructure is shared between users

 A Distributed Resource Management (DRM)
system (e.g. SLURM) is used to schedule jobs
submitted by the users using special scripts:

REMOTE EXECUTION: JOB SUBMISSION

sbatch script.sh

#script content:
…

#SBATCH --nodes=1
#SBATCH --ntasks-per-node=10

#SBATCH --mem=64gb
#SBATCH --time=2-00:00:00
…

 Need for a python interface to automatically
generate these scripts

 Existing solutions “buried” inside large codes
or not directly usable

=> Implementation of a
Python interface for jobs
submission

© MATGENIX, 2025

JOB SUBMISSION: QTOOLKIT

© MATGENIX, 2025

 Github repository: https://github.com/Matgenix/qtoolkit

 Documentation: https://matgenix.github.io/qtoolkit

 Open source

 License: modified BSD (3-clause BSD)

https://github.com/Matgenix/qtoolkit
https://matgenix.github.io/qtoolkit

QTOOLKIT: FEATURES

© MATGENIX, 2025

 Programmatic API

 Well-defined objects to represent a job in a queue, its state, additional information, …

 Submit jobs to PBS, Slurm, Shell, …

 Get info about a job in a queue

 Get list of jobs in a queue

 No dependency on any external package (only optional dependency on monty)

 Used by jobflow-remote

SUMMARY

© MATGENIX, 2025

SUMMARY

 Execution process

 Runner

 States evolution

 How to interact with jobflow-remote

 CLI, python API, GUI

 Configurations

 Setting up a project

 Fine tuning job execution

 Some backend details

 Dealing with failures

© MATGENIX, 2025

THANK YOU

© MATGENIX, 2024

HANDS-ON

Jupyter notebooks (~/work/notebooks/jobflow_remote):

1. Introduction

 Submit flows

 Runner

 CLI

2. Handling errors

 Failures

 Remote errors

 Rerun/retry

3. Configuration

 Set up a new project

© MATGENIX, 2025

© MATGENIX, 2025

FIREWORKS EXECUTION

Inside your
network

Outside your
network

Problem:

Inbound connections to your
own network!

Add workflow
to be executed

Get Jobs to run

Update results

=> Implementation of a
remote execution mode

© MATGENIX, 2025

JOBFLOW REMOTE EXECUTION

Add workflow
to be executed

Submit job

Fetch data

Update results

Inside your
network

Outside your
network

Solution:

Only outbound connections
from your network to the
outside

=> Implementation of a
jobflow remote mode of
execution

© MATGENIX, 2025

HIGH LEVEL

Run
queue

① The user adds a
workflow to the list of
calculations to be
performed

© MATGENIX, 2025

HIGH LEVEL

Run
queue

② Calculations are
submitted to a
supercomputer

© MATGENIX, 2025

HIGH LEVEL

③ Results are brought
back by the runner, …

© MATGENIX, 2025

HIGH LEVEL

③ Results are brought
back by the runner, …

and inserted into the
database

Job
Store

Database containing the standardized
outputs of the calculations

© MATGENIX, 2025

HIGH LEVEL
④ The user can access
the results from the work
station/virtual machine
and perform analysis,
visualizations, …

Job
Store

© MATGENIX, 2025

Database containing the standardized
outputs of the calculations

HIGH LEVEL
④ The user can access
the results from the work
station/virtual machine
and perform analysis,
visualizations, …

Job
Store

© MATGENIX, 2025

HIGH LEVEL

③ Results are brought
back by the runner, …

and inserted into the
database

Job
Store

Large data/files are/can
be stored in different type
of storage

© MATGENIX, 2025

HIGH LEVEL

Run
queue

② Calculations are
submitted to a
supercomputer or, in the
future, to a cloud
computing resource

© MATGENIX, 2025

CLI - RUNNER

runner: control the Runner

 Start

 Stop

 Status

 Subprocesses information

 Kill

© MATGENIX, 2025

	Slide 1: Jobflow-remote
	Slide 2: Plan of the talk
	Slide 3: overview
	Slide 4: Jobflow vs jobflow-remote
	Slide 5: A workflow engine
	Slide 6: Why jobflow-remote?
	Slide 7: jobflow-remote package
	Slide 8: Main features
	Slide 9: High level
	Slide 10: High level
	Slide 11: High level
	Slide 12: High level
	Slide 13: High level
	Slide 14: Remote execution
	Slide 15: Connections schema
	Slide 16: Connections schema – more accurate
	Slide 17: Data distribution
	Slide 18: Create a flow
	Slide 19: Flow in the queue
	Slide 20: The runner
	Slide 21: Flow in the queue
	Slide 22: upload
	Slide 23: Submit to hpc
	Slide 24: Check status HPC
	Slide 25: Check status HPC
	Slide 26: Download outputs
	Slide 27: No errors
	Slide 28: Analyze results
	Slide 29: Job Errors
	Slide 30: With errors
	Slide 31: runner Errors
	Slide 32: upload
	Slide 33: States evolution recap
	Slide 34: Interacting with jobflow-remote
	Slide 35: Command line interface
	Slide 36: Cli --help
	Slide 37: Cli overview
	Slide 38: Cli - project
	Slide 39: Cli - runner
	Slide 40: Cli -job
	Slide 41: Cli - job
	Slide 42: Cli - job
	Slide 43: Cli - flow
	Slide 44: Cli - flow
	Slide 45: Python api
	Slide 46: Access to output results
	Slide 47: gui
	Slide 48: Dealing with errors
	Slide 49: Errors
	Slide 50: Failed - Error information
	Slide 51: Failed - fix
	Slide 52: Remote_error - Error information
	Slide 53: Remote_error - fix
	Slide 54: Rerun/retry schema
	Slide 55: COnfiguration
	Slide 56: Possible configurations
	Slide 57: Possible configurations
	Slide 58: projects
	Slide 59: Multiple projects
	Slide 60: Create a project
	Slide 61: Create a project
	Slide 62: JobStore
	Slide 63: Queue store
	Slide 64: workers
	Slide 65: Execution configuration
	Slide 66: Selecting a project
	Slide 67: Tuning job execution
	Slide 68: How to tune the execution of the job
	Slide 69: Execution configs
	Slide 70: Setting resources at submission level
	Slide 71: Setting resources at worker level
	Slide 72: The submit_flow function
	Slide 73: Using a powerup
	Slide 74: Setting resources with CLI
	Slide 75: backend details
	Slide 76: Queue Db structure
	Slide 77: Remote execution: job submission
	Slide 78: job submission: qtoolkit
	Slide 79: Qtoolkit: features
	Slide 80: summary
	Slide 81: summary
	Slide 82: Thank you
	Slide 83: Hands-on
	Slide 84
	Slide 85: Fireworks execution
	Slide 86: Jobflow remote execution
	Slide 87: High level
	Slide 88: High level
	Slide 89: High level
	Slide 90: High level
	Slide 91: High level
	Slide 92: High level
	Slide 93: High level
	Slide 94: High level
	Slide 95: Cli - runner

