JOBFLOW-REMOTE oL

Matgenix

28 PLAN OF THE TALK

= QOverview

= Job execution process

N
R 2
= [nteracting with jobflow-remote
= Dealing with failures O O
= Configure jobflow-remote v (E1i5

= Fine tuning job execution

© MATGENIX, 2025

OVERVIEW

©® MATGENIX, 2025

% JOBFLOW VS JOBFLOW-REMOTE

©® MATGENIX, 2025

Jobflow”

Workflow definition

Job and Flow objects
Maker

Outputs = JobStore
Connections

Composition

=)

A
5
Jobflow
v 1D
Workflow execution

Jobs and Flows in a DB
Jobs and Flows state evolution
Workers

Submitting jobs

28 A WORKFLOW ENGINE

= Referred in previous presentations as a workflow engine

= Alternative to the run locally () of the previous tutorials

A
.
Common Workflow Language JObr‘OV\/
// \]
R TURBOMOLE o%a
Workilow librares mm
f QUACC orkilows your_workflows

-
”’/
- -~
” -~
’f ~
A \,,

Workflow engines '='. A||DA JObrlOV\/ Flrém@ run_locally()

myqueue

©® MATGENIX, 2025

2 WHY JOBFLOW-REMOTE?

Why a new manager for jobflow?

= Tailored to jobflow

= Full features support
= Better integration

= JSON serialization
= QOverlapping functionalities between Fireworks and Jobflow
= workflow definition
:
= Request from a customer: ymicore
= |nternal DB cannot be accessed from the HPC centre

= Only outbound connections

© MATGENIX, 2025

2 JOBFLOW-REMOTE PACKAGE

o o Github repository: https://github.com/Matgenix/jobflow-remote

= Documentation: https://matgenix.github.io/jobflow-remote
= Forum: https://matsci.org/jobflow

Jobflow”
v (@D

= License: modified BSD (3-clause BSD)

© MATGENIX, 2025

https://github.com/Matgenix/jobflow-remote
https://matgenix.github.io/jobflow-remote
https://matsci.org/jobflow

28 MAIN FEATURES

= Manage the state of Jobs and Flows
= Job execution does not need access to the DB
= Daemon process orchestrating Jobs execution
= Handles multiple “workers” (supercomputer, local execution, supercomputer frontend, ...)
= Retries, restarts (with fail-safe mechanisms)
= Extensive command line interface (CLI)
= programmatic API

= Optional multiple projects

3

& = Integration tests: real

g icsi R MongoDB and i
& = Batch submission 9 ongoUB and queueing

o _ _ N systems with docker

§ = Possible parallel Jobs execution Q‘b containers
éb = Connection with OTP
&

= GUI

" HIGH LEVEL

Calc 4 (D The user adds a
A workflow to the list of

7 calculations to be
JOb O\A/ performed

alls
LLLS

Run
queue

mongoDB.

©® MATGENIX, 2025

(2 Calculations are

- HIGH LEVEL submitted to a

w’

Center

mongoDB. queue

©® MATGENIX, 2025

B HIGH LEVEL e

Center

(3 Results are brought
back by the runner, ..

©® MATGENIX, 2025

¥ HIGH LEVEL |

/ it o

J N (3 Results are brought
back by the runner, ..

and inserted into the
database

%Maggma

Database containing the standardized
mongoDB. " siore outputs of the calculations

©® MATGENIX, 2025

" HIGH LEVEL

%Maggma

mongoDB.

©® MATGENIX, 2025

-
) S

(4) The user can access
the results from the work Li
station/virtual machine
and perform analysis,
visualizations, ...

@ Stable
¢ Unstable

Database containing the standardized
outputs of the calculations

REMOTE EXECUTION

©® MATGENIX, 2025

2 CONNECTIONS SCHEMA

The machine hosting the system that orchestrates the
execution connects to

= Storage

= Workers

And should be accessible from the user

2 CONNECTIONS SCHEMA - MORE ACCURATE

Job status

The machine hosting the system that orchestrates the
update

execution connects to

= Database
- ﬁ -[= JobStore
Job output v = Workers
OQUTPUT
Qy STORE And should be accessible from the user

——

Input upload
Output download
Check process

% DATA DISTRIBUTION

Job status
update

—

E’ 4

Input upload
Output download
Check process

-
mmmmsl) & 8
Job output \‘

”

QUEUE
STORE

OUTPUT
STORE

O

HPC

2 distinct storing locations:
= (Queue: Job and Flow status
= Defined for jobflow-remote
= Strictly MongoDB
= Output: Job outputs
= Jobflow’'s JobStore
= A Maggma Store

Queue and Output can be the same MongoDB
@ database but contain different kind of data.

Use different collections

2 CREATE A FLOW

Create a Jobflow Flow object:
= As in standard Jobflow

= Jobs, Flows and Makers can be used

from jobflow import job, Flow
from jobflow remote.testing import add

71 = add (1, 2)
72 = add(jl.output, 3)
flow = Flow([j1l, J21])

@ Note: the “add” Job is imported from a package.

© MATGENIX, 2025

™ FLOW IN THE QUEUE Job ctate "
Insert flow Use the submit flow function from
Queue store jobflow-remote

i

from jobflow remote import submit flow

output = submit flow (flow)
print (output)

=

The Job inputs are stored as JSON

JobStore

identifier in the DB. In output

@ Note: A db id is added as unique

Caution: the flow is not in the HPC
queue at this stage

© MATGENIX, 2025

28 THE RUNNER

The Runner is the key element making the Job state evolve

= Daemon process(es) handling the whole execution of the jobflow workflows
= Runs in the background

= Keeps working in parallel on all the jobs that are not completed

= Possibly attempts the same action again in case of failure

Started and monitored with the CLI J

) N

©® MATGENIX, 2025

8 FLOW IN THE QUEUE

Checkout Job

© MATGENIX, 2025

i

Queue store

=

JobStore

" THpC

L Center ¥

g

Job state B (=00]VI)

= The runner acknowledges the
presence of a READY Job

= Only the state of the Job is updated

2 UPLOAD

Upload Job

Job state UPLOADED

= Fetch the JSON serialized
Queue store representation of the Job

= Resolve references

= Upload a JSON file to the selected

worker

g

=

= Target is a folder determined by the
JobStore job UUID

CayAeR i Note: when running an external
. 1 @ code (e.g. VASP), it is not the input
Center §

file of the code that is uploaded

© MATGENIX, 2025

Bl SUBMIT TO HPC Job state STV
Submit Job = Create a submission script in the
Queue store

execution folder of the Job

= Submit to the system queue (e.g.

—
1 SLURM, PBS, ..)
m
JobStore
Center .l=..
11
H1 I

workload manager

© MATGENIX, 2025

8 CHECK STATUS HPC Job state RUNNING
Check status = Runner regularly check the status
Queue store of the Job submitted to the HPC

queue.
—
w'
iEEIIIJI;

JobStore

= When the Job starts, the status is
switched to RUNNING

= Job object is deserialized and
executed like a normal Jobflow Job

Center

workload manager

© MATGENIX, 2025

" CHECK STATUS HPC Job state

Check status = Runner regularly check the status
Queue store

Is switched to TERMINATED

of the Job submitted to the HPC
queue.
— = When the Job is finished, the status
———
m TERMINATED means just that the
JobStore job in the queue has stopped
running. No implication on errors

Name will likely change to
EXECUTED

Center

© MATGENIX, 2025 workload manager

¥ DOWNLOAD OUTPUTS

Download
outputs

© MATGENIX, 2025

Job state DOWNLOADED

= Before finishing Job writes the

output to a file-based JobStore on
the worker

Queue store

—
— 4
— 4
W,.'
m

JobStore

= Runner download to the local
machine:

= File-based JobStore

= Execution information (e.g. timings,
errors, ...)

Center

workload manager

M NO ERRORS Job state IRV
Complete Job If no errors during Job execution
Queue store

= Jobs execution information in the
Queue store

i

= Job outputs inserted in the actual
JobStore

=

JobStore

© MATGENIX, 2025

28 ANALYZE RESULTS Job state

IUEERAY Retrieve Outputs from JobStore to
, Queue store 4palyze, plot data, ..

The outputs in JobStore are the same

A

— A

— 4 ;)
m as in standard Jobflow execution

JobStore

© MATGENIX, 2025

% JOB ERRORS

First category of errors: Job failure
= Job raises an exception during execution

= Several potential causes:

= Bad inputs '
= External code does not complete successfully -
= External code fails ERROR

= Bug in the Job code

= Python code running Jobflow on the worker is not killed

» Job state FAILED

©® MATGENIX, 2025

28 WITH ERRORS

Complete Job

Job state FAILED

If errors during Job execution

i

Queue store
= Job execution information has been

downloaded

= Jobs execution information in the
Queue store

=

= Including errors messages

JobStore = No datain JobStore

Note: FAILED means error during
Job execution (the Runner
procedure was executed correctly)

© MATGENIX, 2025

¥ RUNNER ERRORS

Second category of errors: Runner execution error

= The runner fails while performing one of the actions

= Several potential causes:

= Connection issues (worker, JobStore) '
= HPC queueing system errors =
= Queued job unexpectedly killed ERROR

= Queued job reached walltime

= The Runner attempts the action multiple times (exponential backoff)

» Job state REMOTE_ERROR

©® MATGENIX, 2025

2 UPLOAD

Upload Job

Job state Q=N [o])= ={3{{e]5

= Fetch the JSON serialized
Queue store representation of the Job
= Upload of the JSON file to the
worker fails due to connection issue

= After failing multiple times, the Job
is set to the REMOTE_ERROR state

g

=

JobStore

Note: REMOTE_ERROR is
@ independent from Job successful

execution

Center

© MATGENIX, 2025

8 STATES EVOLUTION RECAP

= All possible states evolutions during
Runner execution

= WAITING state: a Job wating for outputs
from a previous Job not yet completed

= Will switch to READY when all
previous Jobs are completed.

©® MATGENIX, 2025

WAITING

L%

N
CHECKED_OUT

v

UPLOADED

SUBMITTED

RUNNING

TERMINATED

DOWNLOADED

COMPLETED

FAILED REMOTE_ERROR

INTERACTING WITH JOBFLOW-REMOTE

©® MATGENIX, 2025

admin: Commands for administering the database

ndex: Commands for manag the indexes of the queue database
|: create: Add an index to one of the queue collections
rebuild: Rebuild all the standard indexes. ...

reset: Reset the jobflow database.
unlock: Forcibly removes the lock from the documents of the selected jobs.
unlock-flow: Forcibly removes the lock from the documents of the selected jobs.
unlock-runner: Forcibly removes the lock from the runner document.
» " " " " . upgrade: Upgrade the jobflow database. ...
C LI IS th e m a I n e n t ry p 0 I nt fo r I nt e ra Ct I n g W It h backup: Commands for handling backup of the database
t: create: Create a backup of the queue database using either mongodump or a python implementation
restore: Recreate the queue database from a previous backup using either mongorestore or a python implementation.

1 bfl t batch: Helper utils handling batch jobs
JO OW - re m 0 e L— 1list: Show the list of processes being executed on the batch workers.
flow: Commands for managing the flows
delete: Permanently delete Flows from the database
graph: Provide detailed information on a Flow.
info: Provide detailed information on a Flow.
CO m m a n d list: Get the list of Flows in the database.
report: Generate a report about the Flows in the database.
gui: Start the server for the GUI
job: Commands for managing the jobs
delete: Delete Jobs individually. The Flow document will be updated accordingly but ...
S everal Co m m a n d S a n d s u b CO m m a n d S files: Commands for managing the files associated to a job
get: Retrieve files from the Job's execution folder.
ls: List of files in the run_dir of the selected Job.
info: Detailed information on a specific job.
list: Get the list of Jobs in the database.
output: Fetch the output of a Job from the output Store.
pause: Pause a Job. Only READY and WAITING Jobs can be paused. The operation is reversible.
play: Resume a Job that was previously PAUSED.
queue-out: Print the content of the output files produced by the queue manager.
report: Generate a report about the Jobs in the database.
rerun: Rerun a Job. By default, this is limited to jobs that failed and children did ...
retry: Retry to perform the operation that failed for a job in a REMOTE_ERROR state ...
set: Commands for setting properties for jobs
exec-config: Set the exec_config for the selected Jobs.
priority: Set the priority for the selected Jobs.
resources: Set the resources for the selected Jobs.
worker: Set the worker for the selected Jobs
set-state: Sets the state of a Job to an arbitrary value. .
stop: Stop a Job. Only Jobs that did not complete or had an error can be stopped.
project: Commands concerning the project definition
E check: Check that the connection to the different elements of the projects are working.

Tree representation

Interfaces with the different projects

exec_config: Commands concerning the Execution configurations

L list: The list of defined Execution configurations

generate: Generate a project configuration file with dummy elements to be edited manually.

list: List of available projects

remove: Remove a project from the projects' folder, including the related folders.

worker: Commands concerning the workers

L list: The list of defined workers
runner: Commands for handling the Runner

foreground: Connect to the daemon processes in the foreground.

info: Fetch the information about the process of the daemon. ...

kill: Send a kill signal to the Runner processes

reset: Reset the value of the machine executing the runner from the database.

run: Execute the Runner in the foreground.
shutdown: Shuts down the supervisord process.
start: Start the Runner as a daemon.
status: Fetch the status of the daemon runner.
stop: Send a stop signal to the Runner processes

©® MATGENIX, 2025

CLI --HELP

Every command has a /-h option for details and list of options

~) jf --help
Usage: jf [OPTIONS] COMMAND [ARGS]...

The controller CLI for jobflow-remote.

--project -p TEXT Select a project for the current execution

--full-exc -fe Print the full stack trace of exception when enabled
--tree Display a tree representation of the CLI command structure
--help -h Show this message and exit.

gui Start the server for the GUI

admin Commands for administering the database
backup Commands for handling backup of the database
batch Helper utils handling batch jobs

flow Commands for managing the flows

job Commands for managing the jobs

project Commands concerning the project definition
runner Commands for handling the Runner

©® MATGENIX, 2025

CLI OVERVIEW

Several main level functionalities: ~) jf --help
: handle the queue DB Usage: jf [OPTIONS] COMMAND [ARGS]...
. manage projects The controller CLI for jobflow-remote.
configurations
. --project -p TEXT Select a project for the current execution
: control the Runner --full-exc -fe Print the full stack trace of exception when enabled
] . --tree Display a tree representation of the CLI command structure
. query and control the Jobs in --help -h Show this message and exit.
the queue DB
. query and control the Flows gui Start the server for the GUI
in th DB admin Commands for administering the database
In e queue backup Commands for handling backup of the database
. batch Helper utils handling batch jobs
. Import/export baCkUP flow Commands for managing the flows
. . job Commands for managing the jobs
: monitor batch jobs project Commands concerning the project definition

runner Commands for handling the Runner

: start the GUI

©® MATGENIX, 2025

CLI - PROJECT

: manage projects
configurations

~) jf project list
The selected project is tutorial from config file /Users/guido/.jfremote/tutorial.yaml
List of projects in /Users/guido/.jfremote
- std

List of current projects

. - test_project
Check the connections to workers |G

and databases The following project names exist in files in the project folder, but could not properly parsed
as projects: test_project.

~) jf project check

The selected project is tutorial from config file /Users/guido/.jfremote/tutorial.yaml
v Worker cecam

v Worker local_shell
v Jobstore
v Queue store

©® MATGENIX, 2025

CLI - RUNNER

: control the Runner
Start
Stop
Status
Subprocesses information

Kill

©® MATGENIX, 2025

~ » jf runner status -

The selected project is tutorial from config file
Daemon status: shut_down
~ Y jf runner start
The selected project is tutorial from config file
~ » Jf runner status
The selected project is tutorial from config file
Daemon status: running
~ » 3f runner 1info
The selected project is tutorial from config file

/Users/guido/. jfremote/tutorial.yaml

/Users/guido/ . jfremote/tutorial.yaml

/Users/guido/. jfremote/tutorial.yaml

/Users/guido/. jfremote/tutorial.yaml

supervisord

runner_daemon_checkout: run_jobflow_checkout
runner_daemon_complete:run_jobflow_complete®d
runner_daemon_qgueue: run_jobflow_queue
runner_daemon_transfer:run_jobflow_transferod

~) jf runner shutdown -

RUNNING
RUNNING
RUNNING
RUNNING
RUNNING

The selected project is tutorial from config file /Users/guido/.jfremote/tutorial.yaml

list

CLI -JOB infe

set-state
job: query and control the rerun
Jobs in the queue DB

List Jobs

Several filtering options

State, ids, names,...

-v verbosity option

Detailed information

Act on jobs

Rerun/retry

Set properties

Report

queue-out
report
output
set

files

©® MATGENIX, 2025

Get the list of Jobs in the database.

Detailed information on a specific job.

Sets the state of a Job to an arbitrary value.

WARNING: No checks. This can lead to inconsistencies in the DB. Use with care.
Rerun a Job. By default, this is limited to jobs that failed and children did
not start or jobs that are running. The rerun Job is set to READY and children
Jobs to WAITING. If possible, the associated job submitted to the remote queue
will be cancelled. Most of the limitations can be overridden by the 'force'
option. This could lead to inconsistencies in the overall state of the Jobs of
the Flow.

All the folders of the Jobs whose state are modified will also be deleted on
the worker.

Retry to perform the operation that failed for a job in a REMOTE_ERROR state

or reset the number of attempts at remote action, in order to allow the

runner to try it again immediately.

Pause a Job. Only READY and WAITING Jobs can be paused. The operation is reversible.
Resume a Job that was previously PAUSED.

Stop a Job. Only Jobs that did not complete or had an error can be stopped.

The operation is irreversible.

If possible, the associated job submitted to the remote queue will be cancelled.
Delete Jobs individually. The Flow document will be updated accordingly but

no consistency check is performed. The Flow may be left in an inconsistent state.
For advanced users only.

Print the content of the output files produced by the queue manager.

Generate a report about the Jobs in the database.

Fetch the output of a Job from the output Store.

Commands for setting properties for jobs

Commands for managing the files associated to a job

CLI - JOB

job: query and control the
Jobs in the queue DB

List Jobs ~ > jf job list -m 10
The selected project is tutorial from config file /Users/guido/.jfremote/tutorial.yaml

Jobs info

Several filtering options

State, ids, names,...

. . static_job COMPLETED | @bcfe83a-501d-41ee-b3ca-d738el4fbf@5 local_shell 2025-03-07

-v verbosity option add_sleep COMPLETED | 77bf2aec-884c-41ab-853d-43ef8a9cf40a local_shell 2025-01-15
add_sleep COMPLETED | 2320d9@a-d444-4778-bf7c-327f8b95024¢ local_shell 2025-01-15

Detailed information add_sleep COMPLETED | d197a589-10fe-4d5d-aS08-b32f483d1fab local _shell 2025-01-15
add_sleep COMPLETED | afb@b4da-53b4-41d5-adla-8f068c@c4ada local_shell 2025-01-15

ACt on jObS add_sleep COMPLETED | 9ab800@e2-0@75e-4fcb-a@ff-71da495ee71f local_shell 2025-01-13
add_sleep COMPLETED | 59a48777-9692-4b47-9add-e9de7644a2a8 local_shell 2025-01-13

add COMPLETED | 1bb@ed7f-3cce-45aa-aebf-dad9a7ecz?214 local_shell_batch 2025-01-13

Rerun/ retry add COMPLETED | 817686b@-6ffe-4d8f-bb98-7afdb5a8a952 local_shell_batch | 2025-01-13

add_distributed | COMPLETED | 60168207-59c1-4d85-84e4-48f8d8ae33ed local_shell_batch 2025-01-13

Set properties

Report

©® MATGENIX, 2025

CLI - JOB

job: query and control the
Jobs in the queue DB

List Jobs

Several filtering options

State, ids, names,...

~) jf job info 667
he selected project is tutorial from config file /Users/guido/.jfremote/tutorial.yaml

db_id = '667'
'1bb@ed7f-3cce-45aa-aebf-dad9a7ec2214'

uuid
1ndex
name
state
remote

1
'add’
'COMPLETED'
i

'step_attempts': 0,
'process_id': '761e5b09-68ab-42fc-a2la-64clad86c8el’,
"prerun_cleanup': False

-v verbosity option

Detailed information 3
. created_on '2025-01-13 13:29'
Act on jObS updated_on = '2025-01-13 13:30'
Rerun/retr start_time '2025-01-13 13:30'
y end_time '2025-01-13 13:30'

metadata = {}
run_dir = '/Users/guido/tmp/run_jobflow/1b/b@/ed/1bb@ed7f-3cce-45aa-aebf-dad9a7ec2214_1"

parents = ['9f79b900-7df6-4ad2-9327-78160a8e8dcf"']
priority = 0
worker = 'local_shell_batch'

Set properties

Report

©® MATGENIX, 2025

CLI - FLOW

: query and control the
F'.OWS in the queue DB list Get the 1list of Flows in the database.

delete Permanently delete Flows from the database
List Flows info Provide detailed information on a Flow.
graph Provide detailed information on a Flow.
report Generate a report about the Flows in the database.

Several filtering options

State, ids, names,...

-v verbosity option
~ » jf flow list -m 5

The selected project is tutorial from config file /Users/guido/.jfremote/tutorial.yaml
The number of Flows printed is limited by the maximum selected: 5
Flows info

Detailed information

Delete Flows

Report

COMPLETED | acbl6@8c-14c4-442f-b645-953f807769d7 2025-03-07 17:46
Gra P h COMPLETED | 4d023d20-6659-4d1f-8e@4-87003acc7bc3 2025-01-15 16:41
COMPLETED | ebd26d@a-9343-46e6-bca9-dd26b532b49c 2025-01-15 15:06
COMPLETED | acd49299-1a39-4e0@e-9557-d4b8d850ae28 2025-01-13 13:31
COMPLETED | 43a046f64-0dd1-41e5-86e7-e609fcbaalad 2025-01-13 13:30

©® MATGENIX, 2025

CLI - FLOW

: query and control the
Flows in the queue DB

List Flows

Several filtering options

State, ids, names,...

-v verbosity option
Detailed information
Delete Flows
Report
Graph

©® MATGENIX, 2025

~ » jf flow info -j 668
The selected project is tutorial from config file /Users/guido/.jfremote/tutorial.yaml
Flow: Flow - acd49299-1a39-4e@e-9557-d4b8d850ae28 - COMPLETED

add_sleep | COMPLETED | 59a48777-9692-4b47-9add-e9de7644a2a8 (1) | local_shell
add_sleep | COMPLETED | 9ab800eZ2-075e-4fcb-adff-71da495ee71f (1) local_shell

~ » jf flow delete -did 592
The selected project is tutorial from config file /Users/guido/.jfremote/tutorial.yaml

This operation will delete 1 Flow(s). Proceed anyway? [y/n] (n): y
Deleted Flow(s) with id: 95e5327f-4ald-461f-ala5-b567a953598c

PYTHON API

Most of the functionalities exposed in the CLI are matched by objects and
functions to perform the same actions from python.

. Interactions with the queue DB
DaemonManager: manage the Runner daemonized process

ConfigManager: manage projects and their content

jobflow_remote JobController

jc = JobController.from_project_name("tutorial")

jobs = jc.get_jobs_info(name="add")

©® MATGENIX, 2025

ACCESS TO OUTPUT RESULTS

Based on the standard Jobflow's JobStore

Same content and approach
Access the correct JobStore based on the project
get_jobstore from jobflow-remote

{'_1d': ObjectId('6785075a45ffa4feecdc8683'),
'uuid': '817686b0-6ffe-4d8f-bb98-7afdb5a8a952',
jobflow_remote JobController "index': 1,
'output': 3,
'completed_at': '2025-01-13T13:30:08.183240",
'metadata’: {'db_id"': '666'},
'hosts': ['f552f925-586c-4d32-9805-71a7413cd19d’,
'43a46f64-0dd1-41e5-86e7-e609fcbaalad’],

'name': 'add',
'@module'’: 'jobflow.core.schemas',
'@class': 'JobStoreDocument',
'@version': '90.1.19'}

jobstore = get_jobstore(project_name="example_tutorial")

jobstore. connect()

jobstore.query_one({"uuid": "817686b0-6ffe-4d8f-bb98-7afdb5a8a952"})

©® MATGENIX, 2024

M GUI

Experimental GUI based on FastHTML

JOb |OV\/7 Projects: Report Query: [Jobs Flows Runner: Start
= Runner =
Jobs Query
. JObS/FlOWS Total number of jobs: 199
[Llst [DBID | [uuiD | [Job Name |
State [Any VJ IWorker I
Start Date/Time |@4/12/2024 | |--:--| End Date/Time | gg/mm/aaaa | |--:—]|
u I n fO Entries per page
= Control
u D e l. et e Total after filter:27

* Report mawe e e e e

674 Obcfe83a-501d-41ee-b3ca-d738e14fbf05 static_job COMPLETED local_shell 2025-03-07 17:46:56 O
673 77bf2aec-884c-41ab-853d-43ef8a9cf40a add_sleep COMPLETED local_shell 2025-01-15 16:41:21 (]}
672 2320d90a-d444-4778-bf7c-327f8b95024¢ add_sleep COMPLETED local_shell 2025-01-15 16:41:01 O
671 d197a589-10fe-4d5d-a508-b32f483d1f0b add_sleep COMPLETED local_shell 2025-01-15 15:06:26 O
670 afbOb4da-53b4-41d5-ad1a-8f068c0cdada add_sleep COMPLETED local_shell 2025-01-15 15:05:56 O
669 9ab800e2-075e-4fch-a0ff-71dad95ee7 1f add_sleep COMPLETED local_shell 2025-01-13 13:31:32 O
668 59a48777-9692-4b47-9add-e9de7644a2a8 add_sleep COMPLETED local_shell 2025-01-13 13:31:08 O

© MATGENIX, 2025

https://fastht.ml/

DEALING WITH ERRORS

©® MATGENIX, 2025

¥ ERRORS

Two categories of errors:

= Job raises an exception during execution FAILED

= Bad inputs

= External code does not complete successfully

= The runner fails while performing one of the actions REMOTE_ERROR
= Connection issues (worker, JobStore)

= HPC queueing system errors

©® MATGENIX, 2025

FAILED - ERROR INFORMATION

Where to look for information about errors?

FAILED

jf job info <JOB ID>:‘“error” keyword

Files on in the worker:
run dir
Queueing system files
gueue.out, queue.err

External code outputs

©® MATGENIX, 2025

db_id =
uuid
index
name
state
error

remote
created_on
updated_on
start_time
end_time
metadata
run_dir
parents
priority
worker

'652'
'70b91ee7-8084-434b-9476-677588989100"
1
'add_sleep'
"FAILED'
Traceback (most recent call last):
File "/python/jobflow-remote/src/jobflow_remote/jobs/run.py"”, line 42, in run_remote_job

{'step_attempts': @, "process_id': "41158', 'prerun_cleanup': False}
'2024-12-07 @02:18'
'2024-12-07 02:19°'
'2024-12-07 02:19°'
'2024-12-07 02:19'

{
'/Users/guido/tmp/run_jobflow/7@/b9/1le/70b91ee7-8084-434b-9476-677588989f00_1"

O

0
'local_shell’

FAILED - FIX

FAILED
No general recipe for fixing failures _

Temporary issue: rerun = Job back to state

Wrong inputs:

Change inputs and rerun

Resubmit a new flow (delete the previous one)
Bug in the code:

Fix and resubmit flow
~) jf job rerun 646

The selected project is tutorial from config file /Users/guido/.jfremote/tutorial.yaml
Operation completed: 1 jobs modified

©® MATGENIX, 2025

REMOTE_ERROR - ERROR INFORMATION

Where to look for information about errors?

REMOTE_ERROR

jf job info <JOB ID>:*“error.queue” keyword

Files on in the worker: db_id = "654"
uuid = 'df8326e8-e9f1-4293-9137-75fdcecbbe49’
' index = 1
Ifllfl__Ci]_If name = 'add_sleep'
state = "REMOTE_ERROR'
Queueing system files Zercieiet
"step_attempts': 0,
'process_id': '435049',
gueue.out, queue.err S ror
File "/python/site-packages/paramiko/sftp_client.py", line 9@9, in _read_response
MISSIhg Jfremote Outputs .self._convert._status(msg)
File "/python/site-packages/paramiko/sftp_client.py", line 938, in _convert_status
raise IOError(errno.ENOENT, text)
RU nner logS FileNotFoundError: [Errno 2] No such file
- \J T . ‘[:L] 7 se
~/.jfremote/PROJ_NAME/log A T e

i
previous_state = 'TERMINATED'
created_on = '2024-12-07 02:23'
updated_on = '2024-12-07 02:24'
start_time = '2024-12-07 02:23'
metadata = {}
run_dir = '/tmp/run/df/83/26/df8326e8-e9f1-4293-9137-75fdcecbbe49_1"
parents = []
priority = 0
worker = 'manneback’

©® MATGENIX, 2025

REMOTE_ERROR - FIX

. - . REMOTE_ERROR
No general recipe for fixing failures

Temporary issue: retry = try again the (e.g. job back to UPLOADED)

~) jf job retry 634

The selected project is tutorial from config file /Users/guido/.jfremote/tutorial.yaml
Wrong resources: Operation completed: 1 jobs modified

Updates resources (CLI or python API) and retry

Wrong connection configuration:

Fix config and retry

If problems from previous steps are involved: full rerun

~) jf job rerun 646

The selected project is tutorial from config file /Users/guido/.jfremote/tutorial.yaml
Operation completed: 1 jobs modified

©® MATGENIX, 2025

CHECKED_OUT

¥ RERUN/RETRY SCHEMA

UPLOADED

SUBMITTED

= rerun = Job back to READY state REMOTE_ERROR
RUNNING

= retry = try again the same remote action
(e.g. job back to UPLOADED,
TERMINATED, ..)

TERMINATED

DOWNLOADED

FAILED @ READY

©® MATGENIX, 2025

CONFIGURATION

©® MATGENIX, 2025

8 POSSIBLE CONFIGURATIONS

©® MATGENIX, 2025

= All-in-one

= User-Workstation

= Full split
= Workstation for the daemon and
separate system for user [USER)
interaction l?/ I;l

Running completely on the cluster

A workstation hosting the daemon
and used for user interactions

O

WARNING: The same python environment should be
present on all the machines

8 POSSIBLE CONFIGURATIONS

= All-in-one

= Running completely on the cluster

= User-Workstation

= A workstation hosting the daemon
and used for user interactions

= Full split
= Workstation for the daemon and
separate system for user ["USER)
interaction ?/ I;l

WARNING: The same python environment should be
present on all the machines

©® MATGENIX, 2025

™ PROJECTS

A project: —

= The set of configurations defining DBs and workers YAML {.P
|] :

= Defined in a file (yaml, json, toml) JSON

= Associated with a single JobStore and Queue

= Preferably bound to a single python environment (avoid incompatibilities)

= Has its own runner

=,

Queue store JobStore

©® MATGENIX, 2025

" MULTIPLE PROJECTS A)
Jobflow”
v EEED

T

sriro3 nanowires ph_conv

=) =) =)
Why mutltiple project? YANL VAML YAML

= Separate research project

= Separate results

= Run independently from other projects

= Different python packages

©® MATGENIX, 2025

CREATE A PROJECT

~) jf project generate -h
The selected project 1s tutorial from config file /Users/guido/.jfremote/tutorial.yaml

Usage: jf project generate [OPTIONS] NAME

Generate a project configuration file with dummy elements to be edited manually.

name TEXT Name of the project

--format -f jsonlyaml [toml| File format
--full Generate a configuration file with all the fields and more

elements
--help -h Show this message and exit.

©® MATGENIX, 2025

8 CREATE A PROJECT

Generate a minimal configuration file to fill in

~) Jf project generate example_tutorial

The selected project is tutorial from config file /Users/guido/.jfremote/tutorial.yaml

Configuration file for project example_tutorial created in /Users/guido/.jfremote/example_tutorial.yaml

name: example_tutorial
workers:
example_worker:

jobstore:
docs_store:
type: MongoStore

example tutorial.yaml:

©® MATGENIX, 2025

type: remote
scheduler_type: slurm

work_dir: /path/to/run/folder
pre_run: source /path/to/python/environment/activate

timeout execute: 60
host: remote.host.net
user: bob

queue:
store:

type: MongoStore

host: localhost

database: db_name
username: bob

password: secret_password
collection_name: jobs

exec_config: {}

database: db_name
host: host.mongodb.com
port: 27017
username: bob
password: secret_password
collection_name: outputs
additional_stores:
data:
type: GridFSStore
database: db_name
host: host.mongodb.com
port: 27017
username: bob
password: secret_password
collection_name: outputs_blobs

2 JOBSTORE

Same format as standard Jobflow, but not from jobflow.yaml

jobstore:

. . . . docs_store:
Configuring job store through settings type: MongoStore
database: db_name
host: host.mongodb.com
port: 27017

e username: bob
tuses NohigoStare password: secret_password
Other maggma host: <host name> cc_>11_.ect10n_na.mef outputs
. 27017 additional_stores:
stores and username: <username> data:
additional stores password: <password> type: GridFSStore
can be database: sdatabase name> database: db_name
P collection_name: <collection name> host: host.mongodb.com
configured too port: 27017

username: bob
password: secret_password

CECAM Automated Workflows School Collection_name: outputs_blobs

virtualatoms.org

©® MATGENIX, 2025

" QUEUE STORE

= Same format as standard jobflow for
maggma store

= Must be a “mongo-Llike” Store with an

underlying real MongoDB queue:
store:
= Can be the same database as type: MongoStore
JobStore, but different collection host: localhost

database: db_name

username: bob

password: secret_password
. _pcollection_name: jobs

©® MATGENIX, 2025

8 WORKERS

Define the workers executing the jobs

= type
= remote: SSH connection vorkers:
= Provide connection details examp le_worker:
] type: remote
= |ocal; same machine as the Runner scheduler_type: slurm

work_dir: /path/to/run/folder

pre_run: source /path/to/python/environment/activate
= shell: executed as a script in the shell timeout_execute: 60

host: remote.host.net

user: bob

= scheduler_type

= slurm/pbs/..: queueing system
= work_dir: folder of execution of jobs

= pre_run: commands added to the
submission script

©® MATGENIX, 2025

8 EXECUTION CONFIGURATION

A list of configuration options to be
added to the submission script on the

worker
exec_config:
vasp_6.4.3_cecam:
) modules:
Can set: - gcc/11.3.0

openmpi/4.1.3
openblas/0.3.20

= Modules to be loaded

= Environmental variables - fftw/3.3.10
export:
®= Pre run/post run: commands PATH: /scratch/cecam.school/Atomate/vasp/vasp.6.4.3_gnu/bin:$PATH

atomate2_VASP_CMD: '"“srun vasp_std"'
atomate2_VASP_GAMMA_CMD: '"srun vasp_gam"'
atomate2_VASP_NCL_CMD: '"srun vasp_ncl"'
atomate2_VASP_STORE_ADDITIONAL_JSON: 'False’

before/after the job execution

Needs to be passed to the Job when VASP_PSP_DIR: /scratch/cecam.school/Atomate/vasp/potcar_pmg
L LD_LIBRARY_PATH: /scratch/cecam.school/Atomate/1libs/scalapack-2.2.2:$LD_LIBRARY_PATH
submitting. SR (AT
post_run:

©® MATGENIX, 2025

SELECTING A PROJECT

If only one project no need to specify it

Python API: project argument

submit_flow(flow, project="example_tutorial™)

CLI

-p argument to j£. Applied to the single command

jf -p example_tutorial job list @ Not jf job list -p example tutorial

Export jfremote project environment variable. Applied to all commands.

export jfremote_project=example_tutorial

if job list

©® MATGENIX, 2025

TUNING JOB EXECUTION

©® MATGENIX, 2025

2@ HOW TO TUNE THE EXECUTION OF THE JOB

exec_config:
vasp_6.4.3_cecam:

= Execution configuration modules:
. . - gcc/11.3.0
= See previous slides - openmpi/4.1.3
— openblas/0.3.20
= Can be set: - fftw/3.3.10
export:
= at SubmiSSion level PATH: /scratch/cecam.school/Atomate/vasp/vasp.6.4.3_gnu/bin:$PATH
. atomate2_VASP_CMD: '"srun vasp_std"'
= using a powerup atomate2_VASP_GAMMA_CMD: '"srun vasp_gam"'

atomate2_VASP_NCL_CMD: '"“srun vasp_ncl"'
atomate2_VASP_STORE_ADDITIONAL_JSON: 'False'
VASP_PSP_DIR: /scratch/cecam.school/Atomate/vasp/potcar_pmg

= Resources (e.g. slu rm—related) LD_LIBRARY_PATH: /scratch/cecam.school/Atomate/libs/scalapack-2.2.2:$LD_LIBRARY_PATH
pre_run:
= Worker name post_run:
- -
= Number of cores, memory, partition... p -~ .
= Can be set: HPC]
Center

= at worker level
= at submission level
= using a powerup

workload manager

©® MATGENIX, 2025

28 EXECUTION CONFIGS

exec_config:

vasp_6.4.3_cecam:
modules:

gcc/11.3.0

openmpi/4.1.3

openblas/0.3.20

fftw/3.3.10

export:
PATH: /scratch/cecam.school/2?
atomate2_VASP_CMD: '"“srun vas
atomate2_VASP_GAMMA_CMD: '"“sr
atomate2_ VASP_NCL_CMD: '"srur
atomate2_VASP_STORE_ADDITIONA
VASP_PSP_DIR: /scratch/cecam.
LD_LIBRARY_PATH: /scratch/cec

pre_run:

post_run:

©® MATGENIX, 2025

At submission

Use the name of one defined in the configuration

submit_flow(flow, exec_config="vasp 6.4.3 cecam')

Or you can directly pass an exec_config dictionary:

submit_flow(flow, exec_config={"modules": ["gcc", "vasp"l],
"export": {"PATH": "/path/to/exec:$PATH"}})

8 SETTING RESOURCES AT SUBMISSION LEVEL

from qtoolkit import QResources

workers.:

e":gg?-gg;h‘g‘ qresources = QResources(queue_name='main',
scheduler_type: slurm job_name=" myjob ",
work_dir: /path/to/run/folder pI‘OCESSQS:ZLD
resources:
pre_run: source /path/to/python/environment/activate .
post_run: submit_flow(flow,
timeout_execute: 60 worker="'example_worker',

max_jobs: —
batch: resources—qresources)

host: remote.host.net
user: bob

e Or you can directly pass a specific dictionary:

password:

S I submit_flow(flow,
passphrase:

gateway: worker="'example_worker',
forward_agent: resources={'partition': 'main’,

connect_timeout: 1< Te 0 . I
connect_kwargs: JOb—na‘me . myJOb 1

inline_ssh_env: 'ntasks': 24, }
| keepalive: 60

shell_cmd: bash . .

login_shell: true Then it is slurm/pbs/..-specific

interactive_login: false

©® MATGENIX, 2025

28 SETTING RESOURCES AT WORKER LEVEL

Resources

workers:
example_worker:

type: remote
scheduler_type: slurm
work.dir: /path/to/run/folder
resources:
pre_run: source /path/to/python/environment/activate
post_run:
timeout_execute: 60
max_jobs:
batch:
host: remote.host.net
user: bob
port:
password:
Rey_filename:
passphrase:
gateway:
forward_agent:
connect_timeout:
connect_kwargs:
inline_ssh_env:
keepalive: 60

| shell_cmd: bash
login_shell: true
interactive_login: false

©® MATGENIX, 2025

2 THE SUBMIT_FLOW FUNCTION

©® MATGENIX, 2024

def submit_ flow(

flow: jobflow.Flow | jobflow.Job | list[jobflow.Job],
worker: str | None = None,

project: str | None = None,

exec_config: str | ExecutionConfig | None = None,
resources: dict | QResources | None = None,

allow external references: bool = False,

) -> list[int]:

Submit a flow for calculation to the selected Worker.

2 USING A POWERUP

Job

Job

def set_run_config(
flow_or_job: Flow | Job,
name_filter: str = None,
function_filter: Callable = None,
exec_config: str | ExecutionConfig | None = None,
resources: dict | QResources | None = None,
worker: str | None = None,
dynamic: bool = True,

) -> Flow | Job:

matching the filter.

Modify in place a Flow or a Job by setting the properties in the

"manager_config" entry in the JobConfig associated to each Job

flow = set_run_config(flow,
name_filter='relaxl’,
resources={'partition': 'main',
'job_name': 'myjob',
"'ntasks': 24,})

submit_flow(flow,
worker="'example_worker')

©® MATGENIX, 2024

SETTING RESOURCES WITH CLI

Modify resources after job has been submitted with submit_flow
Only for READY Jobs to ensure not yet submitted to the HPC queue

CLI: 3£ job set resources

~ » Jf job set resources -did 634 nodes=Z,ntasks=32

The selected project is tutorial from config file /Users/guido/.jfremote/tutorial.yaml
Operation completed: 1 jobs modified

©® MATGENIX, 2025

BACKEND DETAILS

©® MATGENIX, 2025

¥ QUEUE DB STRUCTURE

©® MATGENIX, 2025

= Job documents collection

= Flow documents collection

= Auxiliary collection (unique index, ...)

/JobDoc A

= Job as_dict

= Uuid

= [ndex

= Db_id: unique id

= State

= Parents (uuid)

= Errors
\- Run info (remote, dates, resources,...) y

Job status

update QUEUE

STORE

P ——

- B

>
Job output
OUTPUT
STORE
~—
FlowDoc

= Flow uuid
= Jobs ids (uuid, db_id, index)
= Job connections

= State

% REMOTE EXECUTION: JOB SUBMISSION

= Jobs cannot be executed directly

= A Distributed Resource Management (DRM)
system (e.g. SLURM) is used to schedule jobs
submitted by the users using special scripts:

©® MATGENIX, 2025

HPC infrastructure is shared between users

sbatch script.sh

#script content:

#SBATCH --
#SBATCH --
#SBATCH --
#SBATCH --

nodes=1
ntasks-per-node=10
mem=64gb
time=2-00:00:00

slurm

workload manager

Need for a python interface to automatically
generate these scripts

Existing solutions “buried” inside large codes
or not directly usable

=> Implementation of a
Python interface for jobs
submission

% JOB SUBMISSION: QTOOLKIT

o O Github repository: https://github.com/Matgenix/gtoolkit

= Documentation: https://matgenix.github.io/gtoolkit

= Open source

= License: modified BSD (3-clause BSD)

QToolHIt

©® MATGENIX, 2025

https://github.com/Matgenix/qtoolkit
https://matgenix.github.io/qtoolkit

QTOOLKIT: FEATURES

= Programmatic API

= Well-defined objects to represent a job in a queue, its state, additional information, ...
= Submit jobs to PBS, Slurm, Shell, ..

= Get info about a job in a queue

= (et list of jobs in a queue

= No dependency on any external package (only optional dependency on monty)

= Used by jobflow-remote

©® MATGENIX, 2025

SUMMARY

©® MATGENIX, 2025

8 SUMMARY

= Execution process

= Runner

= States evolution J b | W
= How to interact with jobflow-remote O O

= CLI, python API, GUI REMOTE

= Configurations

= Setting up a project
= Fine tuning job execution
= Some backend details

= Dealing with failures

©® MATGENIX, 2025

THANK YOU

8 HANDS-ON

Jupyter notebooks (~/work/notebooks/jobflow_remote):
1. Introduction
= Submit flows
= Runner
= CLI
2. Handling errors
= Failures
= Remote errors
= Rerun/retry
3. Configuration

= Set up a new project

©® MATGENIX, 2025

Matgenix

" FIREWORKS EXECUTION Outside your

network

Inside your
network

Get Jobs to run Problem:

Update results Inbound connections to your

own networkl!

Calc 4

Add worm => Implementa_tlon of a
remote execution mode

to be executed

mongoDB.

©® MATGENIX, 2025

2 JOBFLOW REMOTE EXECUTION

Inside your

network Submit job

Fetch data

Update results

to be executed

mongoDB.

©® MATGENIX, 2025

Outside your
network

HpC r
Center]

|
4
zf

Solution:

Only outbound connections
from your network to the
outside

=> Implementation of a
jobflow remote mode of
execution

" HIGH LEVEL

Calc 4 (D The user adds a
A workflow to the list of

7 calculations to be
JOb O\A/ performed

alls
LLLS

Run
queue

mongoDB.

©® MATGENIX, 2025

(2 Calculations are

- HIGH LEVEL submitted to a

w’

Center

mongoDB. queue

©® MATGENIX, 2025

B HIGH LEVEL e

Center

(3 Results are brought
back by the runner, ..

©® MATGENIX, 2025

¥ HIGH LEVEL |

/ it o

J N (3 Results are brought
back by the runner, ..

and inserted into the
database

%Maggma

Database containing the standardized
mongoDB. " siore outputs of the calculations

©® MATGENIX, 2025

" HIGH LEVEL

%Maggma

mongoDB.

©® MATGENIX, 2025

-
) S

(4) The user can access
the results from the work Li
station/virtual machine
and perform analysis,
visualizations, ...

@ Stable
¢ Unstable

Database containing the standardized
outputs of the calculations

(@) The user can access

- H |G H LEVEL the results from the work Li

station/virtual machine
and perform analysis,
visualizations, ...

»
"t

@ Stable
¢ Unstable

%Maggma

Job
mongoDB. Gigre Azure Blobs Amazon S3 mongoDB.

© MATGENIX, 2025 GrldFS

¥ HIGH LEVEL |

/ it o

J N (3 Results are brought
back by the runner, ..

and inserted into the
database

Large data/files are/can
be stored in different type
of storage

Job
mongoDB. Gigre Azure Blobs Amazon S3 mongoDB.

© MATGENIX, 2025 GrldFS

@ Calculations are

"8 HIGH LEVEL submitedto |

supercomputer or, in the Wtakaad
‘l

future, to a cloud
computing resource

alls
| R |
Run

mongoDB. queue

©® MATGENIX, 2025

~ » jf runner status
The selected project is tutorial from config file /Users/guido/.jfremote/tutorial.yaml
Daemon status: shut_down

~ » jf runner start
The selected project is tutorial from config file /Users/guido/.jfremote/tutorial.yaml

CLI I!UNNER ~) jf runner status
— The selected project is tutorial from config file /Users/guido/.jfremote/tutorial.yaml

Daemon status: running
~ » jf runner info

. The selected project is tutorial from config file /Users/guido/.jfremote/tutorial.yaml
: control the Runner
Start _
supervisord RUNNING
runner_daemon_checkout : run_jobflow_checkout RUNNING
St (o) p runner_daemon_complete:run_jobflow_complete® RUNNING
runner_daemon_qgueue: run_jobflow_queue RUNNING
runner_daemon_transfer:run_jobflow_transfer® RUNNING
Status
Subprocesses Informatlon Data about running runner in the DB:
. daemon_dir = '/Users/guido/.jfremote/tutorial/daemon’
P(lll hostname = 'MacMat'

last_pinged = '2025-03-14 19:34'
mac_address = '2e:34:e8:70:fb:2c’
project_name = 'tutorial’
runner_options = {
'delay_checkout': 10,
'delay_check_run_status': 10,
'delay_advance_status': 10,
'delay_refresh_limited': 600,
'delay_update_batch': 10,
'delay_ping_db': 7200,
"lock_timeout': 86400,
'delete_tmp_folder': True,
'max_step_attempts': 3,
'delta_retry': [30, 300, 1200]
}
start_time = '2025-03-14 19:34°
user = 'guido'

© MATGENIX, 2025 ~ Y jf runner shutdown
' The selected project is tutorial from config file /Users/guido/.jfremote/tutorial.yaml

	Slide 1: Jobflow-remote
	Slide 2: Plan of the talk
	Slide 3: overview
	Slide 4: Jobflow vs jobflow-remote
	Slide 5: A workflow engine
	Slide 6: Why jobflow-remote?
	Slide 7: jobflow-remote package
	Slide 8: Main features
	Slide 9: High level
	Slide 10: High level
	Slide 11: High level
	Slide 12: High level
	Slide 13: High level
	Slide 14: Remote execution
	Slide 15: Connections schema
	Slide 16: Connections schema – more accurate
	Slide 17: Data distribution
	Slide 18: Create a flow
	Slide 19: Flow in the queue
	Slide 20: The runner
	Slide 21: Flow in the queue
	Slide 22: upload
	Slide 23: Submit to hpc
	Slide 24: Check status HPC
	Slide 25: Check status HPC
	Slide 26: Download outputs
	Slide 27: No errors
	Slide 28: Analyze results
	Slide 29: Job Errors
	Slide 30: With errors
	Slide 31: runner Errors
	Slide 32: upload
	Slide 33: States evolution recap
	Slide 34: Interacting with jobflow-remote
	Slide 35: Command line interface
	Slide 36: Cli --help
	Slide 37: Cli overview
	Slide 38: Cli - project
	Slide 39: Cli - runner
	Slide 40: Cli -job
	Slide 41: Cli - job
	Slide 42: Cli - job
	Slide 43: Cli - flow
	Slide 44: Cli - flow
	Slide 45: Python api
	Slide 46: Access to output results
	Slide 47: gui
	Slide 48: Dealing with errors
	Slide 49: Errors
	Slide 50: Failed - Error information
	Slide 51: Failed - fix
	Slide 52: Remote_error - Error information
	Slide 53: Remote_error - fix
	Slide 54: Rerun/retry schema
	Slide 55: COnfiguration
	Slide 56: Possible configurations
	Slide 57: Possible configurations
	Slide 58: projects
	Slide 59: Multiple projects
	Slide 60: Create a project
	Slide 61: Create a project
	Slide 62: JobStore
	Slide 63: Queue store
	Slide 64: workers
	Slide 65: Execution configuration
	Slide 66: Selecting a project
	Slide 67: Tuning job execution
	Slide 68: How to tune the execution of the job
	Slide 69: Execution configs
	Slide 70: Setting resources at submission level
	Slide 71: Setting resources at worker level
	Slide 72: The submit_flow function
	Slide 73: Using a powerup
	Slide 74: Setting resources with CLI
	Slide 75: backend details
	Slide 76: Queue Db structure
	Slide 77: Remote execution: job submission
	Slide 78: job submission: qtoolkit
	Slide 79: Qtoolkit: features
	Slide 80: summary
	Slide 81: summary
	Slide 82: Thank you
	Slide 83: Hands-on
	Slide 84
	Slide 85: Fireworks execution
	Slide 86: Jobflow remote execution
	Slide 87: High level
	Slide 88: High level
	Slide 89: High level
	Slide 90: High level
	Slide 91: High level
	Slide 92: High level
	Slide 93: High level
	Slide 94: High level
	Slide 95: Cli - runner

