

Molecular modeling of polymers: An introduction

ESPResSo Summer School 2022

Alexander Schlaich,

SC SimTech & Institut for Computational Physics, University of Stuttgart, Germany

alexander.schlaich@simtech.uni-stuttgart.de https://www.simtech.uni-stuttgart.de/exc/people/Schlaich-00004/

- Introduction to polymers
- Chemical structure of polymers
- Polymer models
- Polymer statistics
- How to simulate polymers
- Simplifications, counterion condensation

History

- Polymers ≜ many particles
- H. Staudinger (1881-1965), Nobel Price for Chemistry 1953: suggested the existence of covalent bounded monomers (1920)→ Polymers

So far people believed that Polymers were disordered conglomerates of small molecules

- 1928: Proof of the existence of Polymers
 - Structure revealed via X-Ray scattering by P. Debye (1884-1966), Nobel
 Prize for chemistry in 1936
 - Other important people:

W. Kuhn (1899-1963)

P. Flory (1910-1985) 1974 Nobel Prize for Chemistry

S. F. Edwads (1928-) Feynman Path Integrals for Polymers

P.G. de Gennes (1932- 1991 Nobel Prize for Physics

(LC and Polymers)

History up to Modern Times

Within 10 years of polymer science attitude changed from:

Impossible \rightarrow maybe it's true \rightarrow "Oh well, that's well known!"

1928: Du Pont → Nylon

1930: PVC, Teflon, polyurethane, polystyrene

Plastics means "able to be modelled"

Now we have more promising fields: organic electronics, solar cells, polymer batteries....

Semi-conducting polymers, Electrochemical Transistors

Examples for Polymers

$$\begin{bmatrix} CI \\ | \\ -CH_2-C- \\ | \\ H \end{bmatrix}_n$$

polyvinylchloride, PVC

Physical Chemistry of Polymers

If more than one group is attached to a main C atom, different spatial arrangements are possible (e.g. see Polystyrene)

<u>Tacticity:</u> atactic no regularity in the chemical structure

isotactic completely regular attachment pattern

syndiotactic regular and alternating attachment

pattern

Homopolymer single type of repeat unit

Copolymers: more than one type of repeat unit, i.e. A, B

random copolymer: random arrangement of blocks

ABBAABAB (quenched)

block copolymer: Different monomers are arranged in

AAAABBBB blocks of homopolymers: di-, tri-,

multiblock copolymers

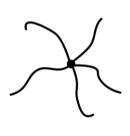
Polymer Architectures

<u>Linear Polymers:</u> completely characterized by the degree of polymerization **n**

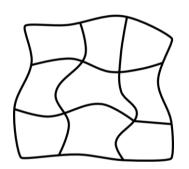
Branched polymers:

Polymer with short and Polymer with short and Oligonia

Polymer with grafted oligomeric side chains

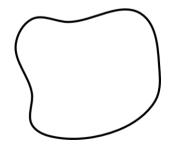


Star polymers



Network of crosslinked chains (rubber)

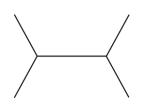
Dendrimers



Ring polymers



Combs



H-branched

Ladder

Polymer Solutions

For uncharged polymers one normally needs organic solvents charged polymers are soluble in water

Overlap volume fraction
$$\phi^*=rac{NV_{mon}}{V}$$
: monomer volume $Vpprox R^3$, R size of polymer or polymer density

 ϱ : polymer density

Overlap concentration
$$c^* = \varrho \phi^* = \frac{\varrho N \ V_{mon}}{V}$$

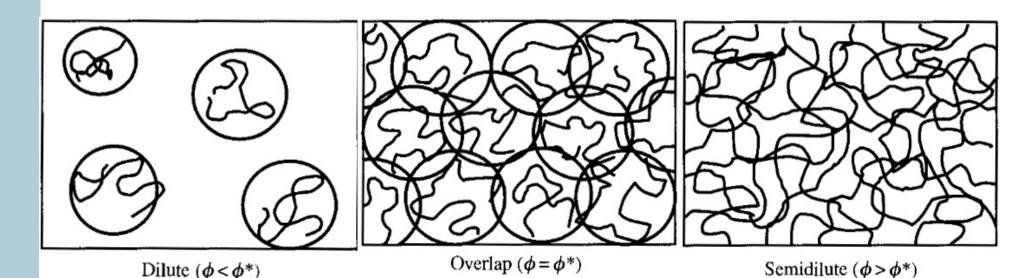
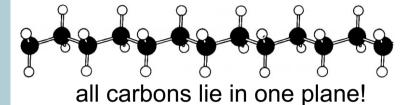


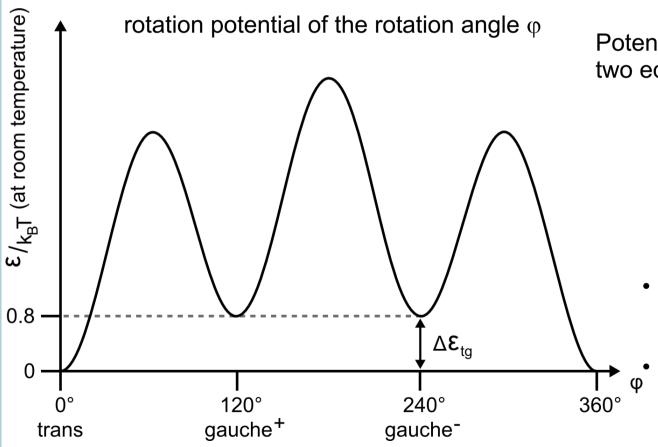
Fig. from M. Rubinstein, R. Colby, Polymer Physics

Origin of Flexibility of Polymers

Polyethylene:



bond length I ~ 1.54 Å (const! ± 0.05 Å) tetrahedral angle $\Theta = 68^{\circ}$ almost const. $R_{\text{max}} = \text{nl cos}(\Theta/2)$



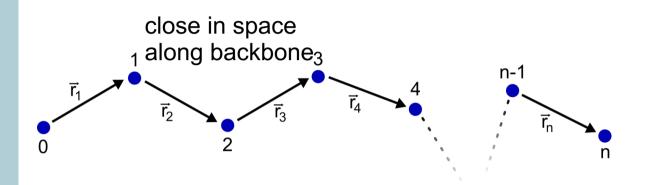
Potential energy shows two equal minima at

120° gauche⁺ 240° gauche⁻ $\Delta \varepsilon_{tg} = 0.8 k_B T$

- all different rotational isomeric states can be occupied
- large conformational state space

Ideal Chain Conformations

only <u>local</u> interactions between monomers



$$\begin{aligned} \vec{R}_n &= \sum_{i=1}^n \vec{r}_i \\ \left\langle \vec{R}_n \right\rangle &= 0 \\ &= \sum_{i=1}^n \langle \vec{r}_i \rangle \end{aligned}$$

"End-to-End vector"

no preferred orientation in each step mathematically described as a random walk

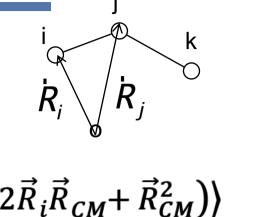
()

ensemble average over all possible states of the system (i.e. many chains or many realizations of one chain)

Radius of Gyration

\vec{R}_i position vector of monomers

$$\vec{R}_{CM} \equiv \frac{1}{N} \sum_{j=1}^{N} \vec{R}_{j}$$
 (set all masses to unity)



$$\langle R_{G}^{2} \rangle = \frac{1}{N} \langle (\vec{R}_{i} - \vec{R}_{CM})^{2} \rangle = \frac{1}{N} \langle \sum_{i=1}^{N} (\vec{R}_{i}^{2} - 2\vec{R}_{i}\vec{R}_{CM} + \vec{R}_{CM}^{2}) \rangle$$

$$= \frac{1}{N^{2}} \langle \sum_{i,j}^{N} (\vec{R}_{i}^{2} - 2\vec{R}_{i}\vec{R}_{j} + \vec{R}_{i}\vec{R}_{j}) \rangle = \frac{1}{2N^{2}} \sum_{i,j}^{N} \langle \vec{R}_{i}^{2} - 2\vec{R}_{i}\vec{R}_{j} + \vec{R}_{j}^{2} \rangle$$

$$= \frac{1}{2N^{2}} \sum_{i,j}^{N} \langle (\vec{R}_{i} - \vec{R}_{j})^{2} \rangle$$

Following relations can be proven:

ideal chain:
$$\frac{\langle R_n^2 \rangle}{\langle R_G^2 \rangle} = \epsilon$$

rod:
$$\frac{\langle R_n^2 \rangle}{\langle R_G^2 \rangle} = 12$$

uniform sphere :
$$\frac{\langle R_n^2 \rangle}{\langle R_G^2 \rangle} = \frac{5}{3}$$
 of radius R

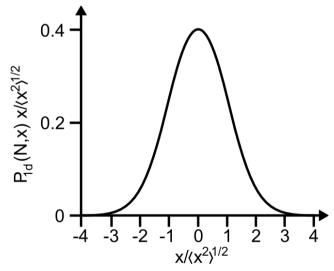
End-to-End Distance Distribution

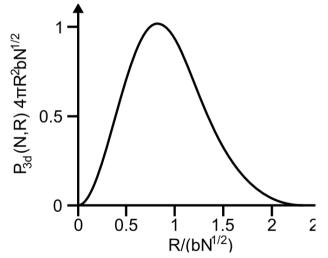
$$P(\vec{R}, N) = \left(\frac{2\pi Nb^2}{3}\right)^{-3/2} \exp\left(-\frac{3R^2}{2Nb^2}\right)$$

equivalent to a RW distribution

In spherical coordinates it can be written as: $here |\dot{R}| = R$

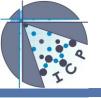
$$P_{3D}(R,N)4\pi R^2 dR = 4\pi \left(\frac{2\pi Nb^2}{3}\right)^{-3/2} \exp\left(-\frac{3R^2}{2Nb^2}\right) R^2 dR$$





Be aware:

For $R > R_{max}$ the Gaussian approximation predicts a finite probability, which is unphysical



Free Energy of an Ideal Chain

Entropy $S = k_B \ln \Omega$

 $\Omega(N, \vec{R})$: number of conformations of a freely jointed chain with N monomers and \vec{R}

$$\hookrightarrow P_{3D}(N,\vec{R}) = \frac{\Omega(N,\vec{R})}{\int \Omega(N,\vec{R}) dR}$$

$$\hookrightarrow S(N,\vec{R}) = k_B \ln P_{3D}(N,\vec{R}) + k_B \ln \left[\int \Omega(N,\vec{R}) \right]$$

$$= -\frac{3}{2} k_B \frac{R^2}{Nb^2} + \frac{3}{2} k_B \ln \left(\frac{3}{2\pi Nb^2} \right) + k_B \ln \left[\int \Omega(N,\vec{R}) dR \right]$$

$$= -\frac{3}{2} k_B \frac{R^2}{Nb^2} + S(N,0)$$

 $\hookrightarrow \max(S(N, \vec{R})) = S(N, 0)$ Helmholtz-Free energy:

$$F(N,\vec{R}) = U(N,\vec{R}) - TS(N,\vec{R}) = \frac{3}{2}k_BT\frac{R^2}{Nb^2} + F(N,0)$$

ideal chain has no long range $U(N,0) - TS(N,0)$
interaction, independent of \vec{R}

Free Energy of an Ideal Chain

Ideal chain free energy increases $\sim \vec{R}^2$

Hooke's law of a spring!

To stretch the chain ends by a distance R_x in x-direction requires a force

$$f_x = \frac{\partial F(N,R_x)}{\partial x} = \frac{3k_BT}{Nb^2}R_x$$
, or in general $\vec{f} = \frac{3k_BT}{Nb^2}\vec{R}$

$$\vec{f} = \frac{3k_BT}{Nb^2}\vec{R}$$

entropic spring constant

For large N, large b, lower T a polymer becomes easier to stretch **Entropic elasticity**

Metals and ceramics become soft as T is raised energetic elasticity

Rubber contracts if one raises T [or heats up when one extends it!]

www.youtube.com/watch?v=GUY1w2WX2tc

$$F(N, \vec{R}) = \frac{3}{2} K_B T \frac{R^2}{Nb^2}$$

Scaling of the Polymer Extension

For polymers different scaling regimes exist in the limit of large N:

 $R \sim N^{v}$

where v is called the Flory exponent

Ideal (RW, Gaussian) chain or Θ – solvent: v = 1/2

SAW, real chain, polymer in good solvent: v = 0.63...

(Flory v = 3/5)

Polymer in poor solvent: v = 1/3

Polyelectrolyte: v = 1

Flory Scaling Theory (Real Chains)

In reality, chains can not intersect, have excluded volume. Self-Avoiding Walk (SAW)

The energy of excluded volume interaction is k_BT per exclusion $v\frac{N}{R^3}$, for N monomers we have $F_{Rep} \sim k_BTv\frac{N^2}{R^3}$ (second virial interaction)

Minimization:

d	$ u^{Flory}$	v_{exact}
1	1	1
2	$\frac{3}{4}$	$\frac{3}{4}$
3	$\frac{3}{5}$	0.588
4	$\frac{1}{2}$	$\frac{1}{2}$

 $d \ge 4$ no correction in chain statistics due to excluded volume "upper critical dimension"

Blobology (left out more or less)

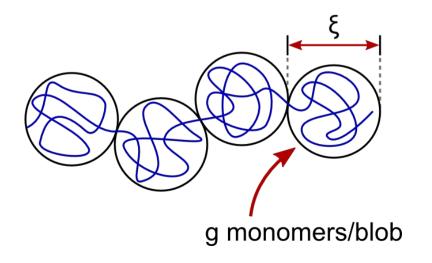
deGennes scaling theory...

P.G. deGennes, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca (1979).

Sufficiently small parts of the chain are unperturbed (blobs)

Chain ~ sequence of blobs

Yielding simple power law scaling relations



Hydrodynamics of polymers

Hydrodynamic radius of a polymer

$$\langle \frac{1}{R_H} \rangle = \frac{1}{N} \sum_{i \neq j} \langle \frac{1}{|\vec{r}_i - \vec{r}_j|} \rangle$$

Einstein relation
$$D_0=\frac{k_BT}{\Gamma_0}$$
 Stokes $\Gamma_0=6\pi\eta R$ Stokes Einstein $D=\frac{k_BT}{6\pi nR}$

$$\Gamma_0 = 6\pi \eta R$$

Rouse dynamics

Single monomer
$$\Gamma_0$$

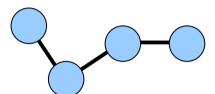
$$\Gamma_R(N) = \sum_i^N \Gamma_i = N \Gamma_0 \qquad D_{Rouse}(N) = \frac{k_b T}{\Gamma_0} N^{-1}$$

$$\Gamma_Z(N)\sim 6\pi\eta R(N)\sim 6\pi\eta R^{
u}$$
 $D_{Zimm}=rac{k_BT}{\Gamma_Z(N)}\sim rac{k_BT}{6\pi\eta b}N^{-
u}$ Chain as a coil

$$D_{KZ}(N) = \frac{D_0}{N} + \frac{k_B T}{6\pi \eta} \langle \frac{1}{R_H} \rangle$$

Ex: Gaussian Polymer in a ⊕-Solvent

- Conformational properties of a Gaussian polymer in a Θ-solvent are that of a random walk
- Basis for bead-spring model of a polymer!



• Use a harmonic potential for the bonds:

$$V_{\rm h}(r) = \frac{k}{2} (r - r_0)^2$$

We can compute the partition function exactly

$$H_0 = \frac{1}{2} \underbrace{\frac{3k_B T}{b^2}}_{k} \sum_{i=0}^{N-1} |\vec{r_i} - \vec{r_{i+1}}|^2$$

 Random walk and bead-spring model generate the same partition function!

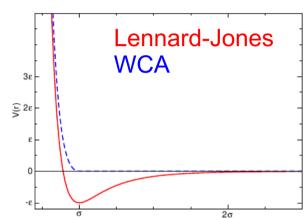
Polymer Chains in Good Solvent

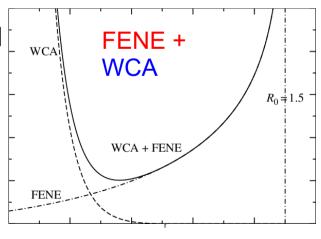
- Θ -solvent is a special case!
- Solvents are good or poor w.r. to the polymer
- Good solvent can be modeled via a repulsive potential
 - Use the repulsive part of Lennard-Jones (aka Weeks-Chandler-Anderson)

$$V_{\text{WCA}}(r) = \begin{cases} V_{\text{LJ}}(r) + \varepsilon &, \text{if } r < 2^{1/6}\sigma \\ 0 &, \text{otherwise} \end{cases}$$

$$V_{FENE}(r) = -\frac{1}{2}kR_0^2 \ln(1 - \frac{r}{R_0})$$

- Has a maximal extension/compression
- Sufficient to avoid bond crosssing

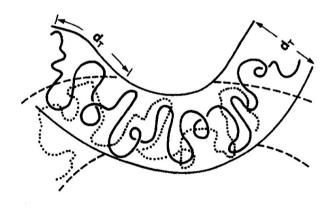




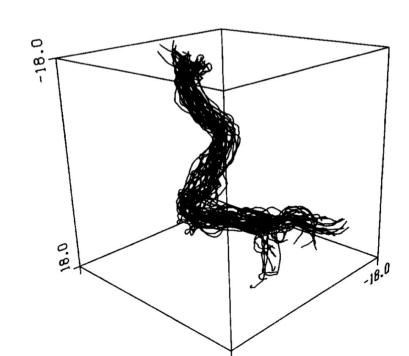
Kremer-Grest Model

K. Kremer, G. Grest, J. Chem. Phys. 92, 5057 (1990)

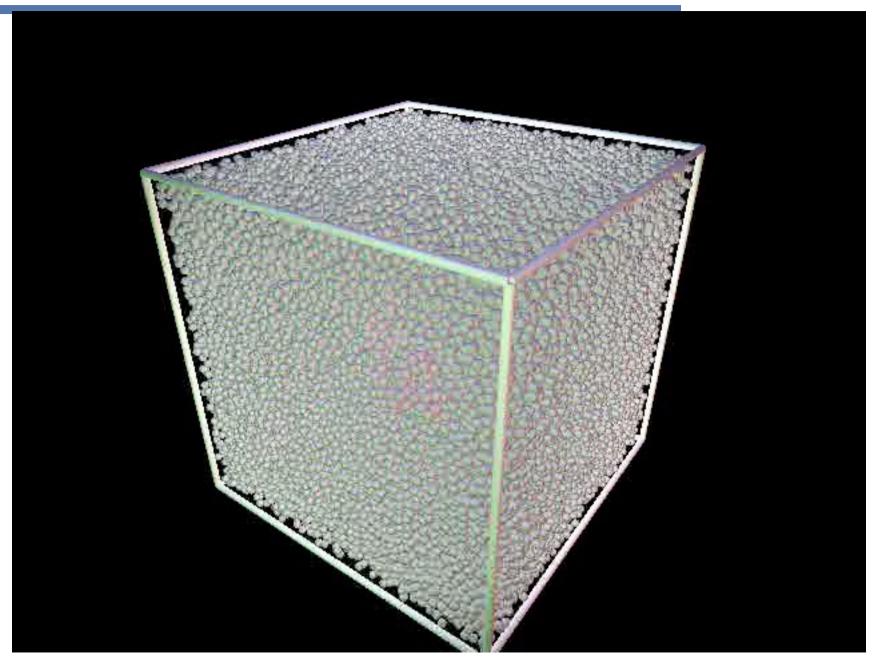
- The standard model for polymer melts!
- Langevin-MD with a bead-spring model: FENE bonds plus WCA potential for beads with Kremer-Grest parameters: $R_0 = 1.5\sigma$ and $k = 30\epsilon/\sigma$
- Very efficient. Sizes can be pushed up to a few hundred chains of 300-400 beads



Idea of Reptation

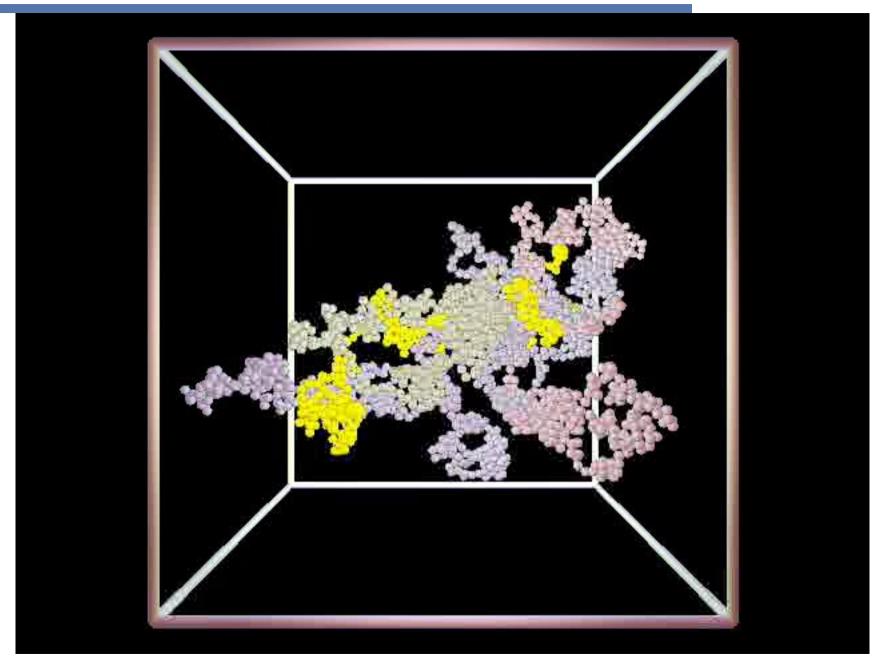


Kremer-Grest Polymer Melt



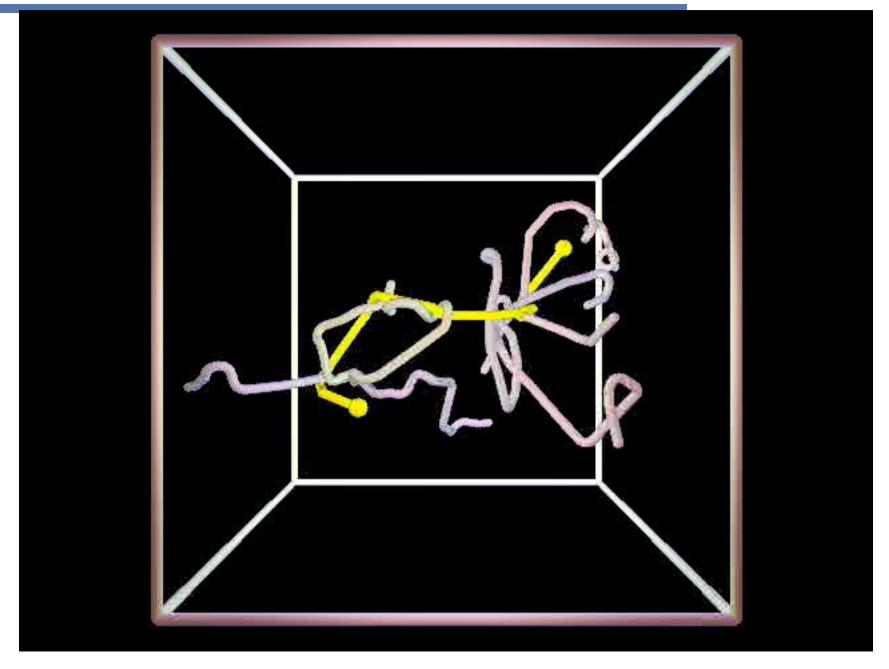
Ralf Everaers, et al. Science 303, 823 (2004); DOI: 10.1126/science.1091215

Primitive Path Analysis ->



Ralf Everaers, et al. Science 303, 823 (2004); DOI: 10.1126/science.1091215

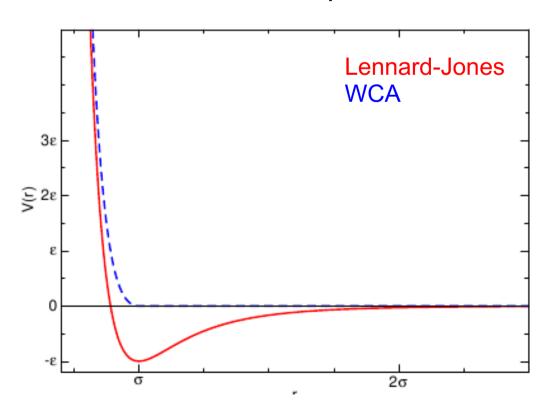
Entanglements



Ralf Everaers, et al. Science 303, 823 (2004); DOI: 10.1126/science.1091215

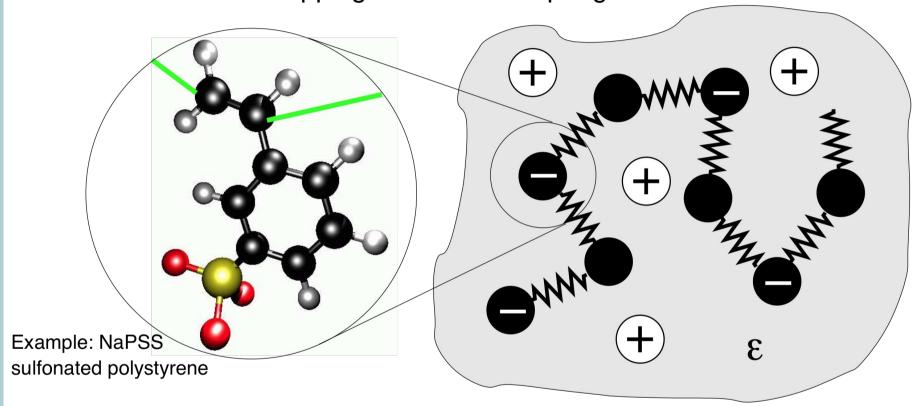
Polymer Chains in Poor Solvent

- Poor solvent can be modeled via a full Lennard-Jones potential
- Polymer monomers experience an attraction, since they want to minimize contact with solvent
- the quality of the solvent can be changed by varying the attraction via the interaction parameter ϵ and the cut-off



Charged Polymers

Mapping onto a bead-spring model

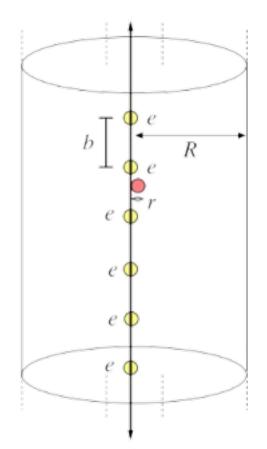


monomers, ions beads with charge fraction f bond potential nonlinear springs solvent dielectric background ϵ effective bead-bead interaction

Polymer simplification

complex interaction: ion distribution → polymer conformation stiff, stretched polymer conformation → uniformly charged rod.

Onsager Argument for Condensation



$$\lambda = e_0/b$$
 $\ell_{\rm B} := e_0^2/4\pi\varepsilon k_{\rm B}T$ $\phi(r) \approx \frac{\lambda}{2\pi\varepsilon} \ln(r)$

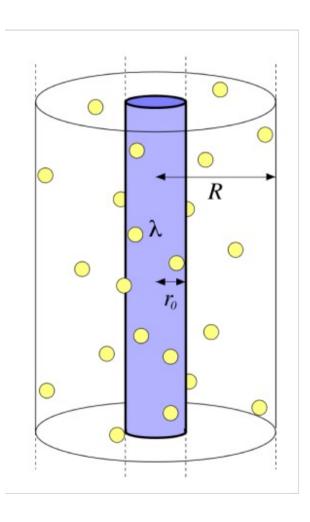
question: $\Delta F = \Delta E - k_{\rm B} T \Delta S$?

$$\Delta E \sim e_o \frac{\lambda}{2\pi\varepsilon} \ln \frac{R}{r} \quad \Delta S \sim \ln \frac{V_R}{V_r} \sim 2 \ln \frac{R}{r}$$

$$\Longrightarrow \Delta F = \left(\frac{\ell_{\rm B}}{b} - 1\right) 2k_{\rm B}T \ln \frac{R}{r}$$

 $\xi:=\tfrac{\ell_{\mathrm{B}}}{b}<1, \text{ entropy dominated, } \xi:=\tfrac{\ell_{\mathrm{B}}}{b}>1, \text{ energy dominated}$ $\Longrightarrow \text{The charged plane is energy dominated}$ $\Longrightarrow \text{The charged sphere is entropy dominated}$

PB for a cylindrical cell model



Bjerrum length Manning parameter Reduced potential

$$\ell_{\mathrm{B}} := e_0^2/4\varepsilon k_{\mathrm{B}}T$$

$$\xi := \lambda \ell_{\mathrm{B}}/e_0$$

$$y(r) := e_0 \Psi(r)/k_{\mathrm{B}}T$$

$$y'' + \frac{1}{r}y' = 4\pi \ell_{\rm B} n(r) n(r) = n(R) e^{y(r)} ; y'(r_0) = -2\xi/r_0 y'(R) = 0$$

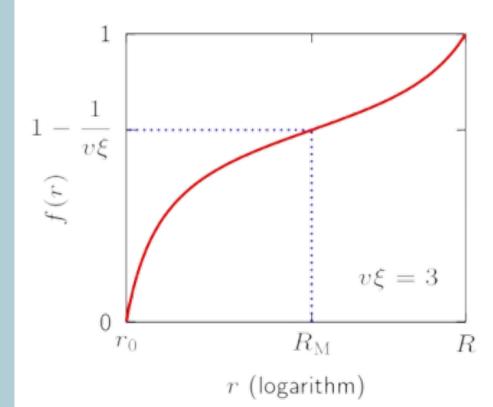
$$y(r) = -2\ln\left\{\frac{r}{R}\sqrt{1+\gamma^{-2}}\cos\left(\gamma\ln\frac{r}{R_{\rm M}}\right)\right\}$$

where the integration constants γ and $R_{\rm M}$ are obtained from the boundary conditions

Counterion Condensation

the fraction of counterions within a distance $r \in [r_0, R]$ is given

$$f(r) = 1 - \frac{1}{\xi} + \frac{\gamma}{\xi} \tan\left(\gamma \ln \frac{r}{R_{\rm M}}\right)$$



Manning condensation at $\xi > 1$:

$$f < 1 - \frac{1}{\xi} \iff \lim_{R \to \infty} r(f) < \infty$$

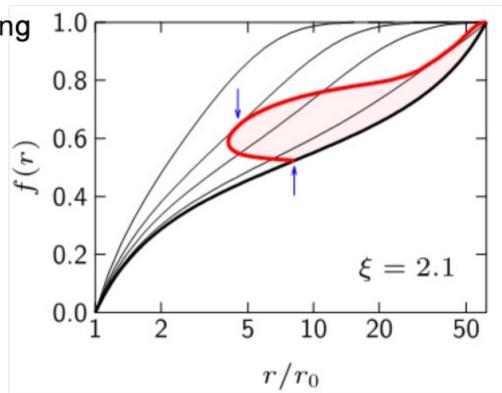
Inflection point criterium:

$$\frac{\mathrm{d}^2 f}{\mathrm{d}(\ln r)^2} \bigg|_{r=R_{\mathrm{M}}} = 0 \quad \Rightarrow \quad R_{\mathrm{M}}$$

Condensation with Added Salt

 Inflection points of f(r) → Manning radius & fraction

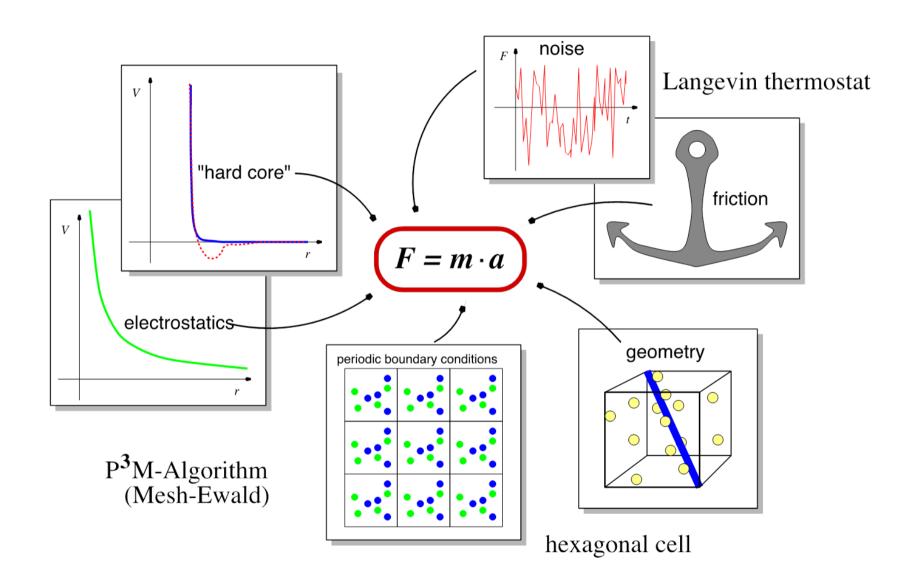
- Ion fraction → charge fraction
- More salt → more screening: condensed layer contracts
- λ_D<R: new inflection points for increasing concentration
- $\lambda_D < R_M$: no inflection points (screening dominates)



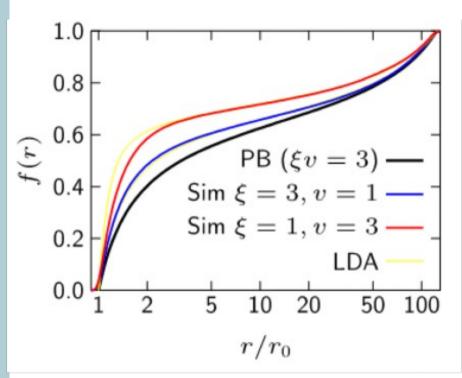
Exchange of the relevant length-scale: $R_{\rm M} \to \lambda_{\rm D}$.

If screening dominates the concept of condensation looses its meaning!

Simulations...



Manning Parameter versus Valence



- Counterion condensation is stronger than in Poisson-Boltzmann theory.
- Product ξv is no longer universal.
- Discrepancy increases with valence.

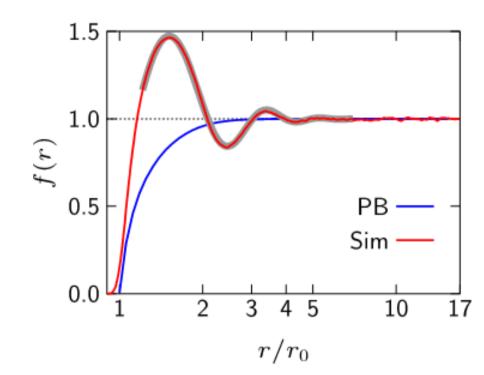
 Local density approximation(LDA): local correction to the PB free energy functional (~first correction on correlation effects)

Poisson-Boltzmann theory neglects correlations; these enhance counterion condensation, especially for multivalent counterions.

Overcharging for Multivalent Salt

$$\xi = 4$$
; 2:2-Salt; $\bar{n} = 2.1 \times 10^{-2} \sigma^{-3}$

- The rod charge gets repeatedly overcompensated.
- Reversed charged layers.
- Charge oscillations are exponentially damped.



PB fails if:

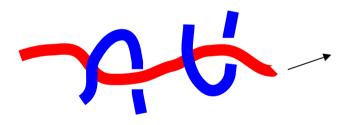
- 1) Strong electrostatic interactions (large λ)
- 2) Multivalent ions (correlation effects)
- 3) High density (excluded volume becomes important)

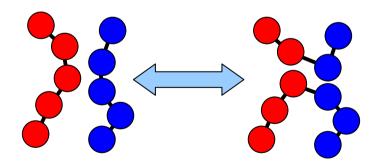
MC moves in molecular simulations

- Single particle moves ensure irreducibility
- Other moves can be invented to faster sample the possible states
- Examples for polymer simulations: pivot, double pivot, or...

Reptation moves

Crossover moves





Summary

- Basic polymer chemistry facts
- Basic polymer physics concepts
- Theoretical description of polymers
- Polymeric diversities and statistics
- How to simulate polymers
- Concept of counterion condensation

Good text books on polymers

- Gert Strobl, Condensed Matter Physics,
 Springer, 2004
- M. Rubinstein, R. Colby, *Polymer Physics*,
 Oxford University Press, 2003
- Richard A.L. Jones, Soft Condensed Matter, Oxford Master Series in Condensed Matter Physics, Vol. 6, 2002